• Title/Summary/Keyword: Position Process

Search Result 2,831, Processing Time 0.037 seconds

Development of multi-object image processing algorithm in a image plane (한 이미지 평면에 있는 다물체 화상처리 기법 개발)

  • 장완식;윤현권;김재확
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.555-555
    • /
    • 2000
  • This study is concentrated on the development of hight speed multi-object image processing algorithm, and based on these a1gorithm, vision control scheme is developed for the robot's position control in real time. Recently, the use of vision system is rapidly increasing in robot's position centre. To apply vision system in robot's position control, it is necessary to transform the physical coordinate of object into the image information acquired by CCD camera, which is called image processing. Thus, to control the robot's point position in real time, we have to know the center point of object in image plane. Particularly, in case of rigid body, the center points of multi-object must be calculated in a image plane at the same time. To solve these problems, the algorithm of multi-object for rigid body control is developed.

  • PDF

Initial Rotor Position Estimation of an IPMSM Based on Least Squares Approximation with a Polarity Identification (극성 판별이 가능한 최소 제곱법 기반의 IPMSM 회전자 초기 위치 추정)

  • Kim, Keon Young;Bak, Yeongsu;Lee, Kyo-Beum
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.1
    • /
    • pp.72-75
    • /
    • 2018
  • An initial rotor position estimation method is proposed in this study for an interior permanent-magnet synchronous motor without a resolver or an absolute encoder. This method uses least squares approximation to estimate the initial rotor position. The magnetic polarity is identified by injection of short pulses. The proposed estimation process is robust because it does not require complex signal processing that depends on the performance of a digital filter. In addition, it can be applied to various servo systems because it does not require additional hardware. Experimental results validate the effectiveness of the proposed method using a standard industrial servomotor with interior-permanent magnets.

Structure Analysis of Wheel Set as Variation of Contact Position between Wheel and Rail (차륜과 레일의 접촉위치 변화에 따른 윤축의 구조해석)

  • Seo Byung-Wook;Ham Young-Sam;Hong Jai-Sung
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.606-610
    • /
    • 2004
  • In this paper, we would like to explain about the structure analysis of wheel set as variation of contact position between wheel and rail. Measurement of interacted force between wheel and rail is necessary for running safety evaluation as important factor of derailment mechanism. It's necessary to running safety evaluation of rolling stock. Wheel unload and lateral force change as variation of contact position between wheel and rail. Interacted force between wheel and rail got as each contact position through computer simulation. This is necessary process as first research for evaluation of derailment phenomenon and running safety.

  • PDF

Study on the Compensation of Strain Measurement Error in Sheet Metals (박판 변형률 측정 오차의 보정에 관한 연구)

  • 차지혜;금영탁
    • Transactions of Materials Processing
    • /
    • v.13 no.7
    • /
    • pp.594-599
    • /
    • 2004
  • In the sheet metal forming operations, the strain measurement of sheet panel is an essential work which provides the formability information needed in die design, process design, and product inspection. To measure efficiently complex geometry strains, the 3-dimensional automative strain measurement system, which theoretically has a high accuracy but practically has about 3~5% strain error, is often used. For eliminating the strain error resulted in measuring the strains of formed panels using an automated strain measurement system, the position error calibration method is suggested, which computes accurate strains using the grids with accurate nodal coordinates. The accurate nodal coordinates are calculated by adding the nodal coordinates measured by the measurement system and the position error found using the multiple regression method as a function of the main error parameters obtained from the analysis of strain error in a standard cube. For the verification, the strain distributions of square and dome cups obtained from the position error calibration method are compared with those provided by the finite element analysis and ASAME.

State Analysis and Location Tracking Technology through EEG and Position Data Analysis

  • Jo, Guk-Han;Song, Young-Joon
    • Journal of Advanced Information Technology and Convergence
    • /
    • v.8 no.2
    • /
    • pp.27-39
    • /
    • 2018
  • In this paper, we describe the algorithms, EEG classification methods, and position data analysis methods using EEG and ADS1299 sensors. In addition, it is necessary to manage the amount of real-time data of location data and EEG data and to extract data efficiently. To do this, we explain the process of extracting important information from a vast amount of data through a cloud server. The electrical signals extracted from the brain are measured to determine the psychological state and health status, and the measured positions can be collected using the position sensor and triangulation method.

Direct position tracking method for non-circular signals with distributed passive arrays via first-order approximation

  • Jinke Cao;Xiaofei Zhang;Honghao Hao
    • ETRI Journal
    • /
    • v.46 no.3
    • /
    • pp.421-431
    • /
    • 2024
  • In this study, a direct position tracking method for non-circular (NC) signals using distributed passive arrays is proposed. First, we calculate the initial positions of sources using a direct position determination (DPD) approach; next, we transform the tracking into a compensation problem. The offsets of the adjacent time positions are calculated using a first-order Taylor expansion. The fusion calculation of the noise subspace is performed according to the NC characteristics. Because the proposed method uses the signal information from the previous iteration, it can realize automatic data associations. Compared with traditional DPD and two-step localization methods, our novel process has lower computational complexity and provides higher accuracy. Moreover, its performance is better than that of the traditional tracking methods. Numerous simulation results support the superiority of our proposed method.

Control of Automatic Pipe Cutting Robot with Magnet Binder Using Learning Controller (반복학습제어기를 이용한 자석식 자동 파이프 절단 로봇의 제어)

  • Lee Sung-Whan;Kim Gook-Hwan;Rhim Sung-Soo;Lee Soon-Geul
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.541-546
    • /
    • 2005
  • Tracking control of an automatic pipe cutting robot (APCROMB) is studied. Using magnetic force APCROMB, which is designed and developed in Kyung Hee University, binds itself to the pipe and executes unmanned cutting process. The gravity effect on the movement of APCROMB varies as it rotates around the cylindrical pipe laid in the gravitational field. To maintain a constant velocity and consistent cutting performance against the varying gravitational effect, the authors adopt a multi-rate repetitive learning controller (MRLC), which learns the required effort to cancel the repetitive tracking errors caused by nonlinear effect. In addition to the varying gravity effect other types of nonlinear disturbances including backlash in the driving system and the slip between the wheels of APCROMB and the pipe also cause degradation in the cutting process. In order to identify those nonlinear disturbances the position estimation based on the encoder attached at the motor is not good enough. To identify the absolute angular position of APCROMB the authors propose the angular position estimation based on the signals from a MEMS-type two-axis accelerometer mounted on APCROMB. The tracking performances of APCROMB with a MRLC using the encoder-based position estimation is experimentally measured and results are shown. Also the difference between the encoder-based angular displacement measurement and the accelerometerbased angular displacement measurement is included.

  • PDF

The Comparison of Sleep Characteristics According to the Sleep Positions in Healthy Newborns (정상 신생아의 체위에 따른 수면양상 및 행동변화 비교)

  • Lee Ae Ran;Ahn Hae Young;Lee Jong Soon
    • Child Health Nursing Research
    • /
    • v.5 no.3
    • /
    • pp.281-291
    • /
    • 1999
  • The purpose of this study was to compare the sleep characteristics between the prone and the supine position in healthy newborns. The 48 newborns were observed in the prone position and the supine position respectively on the 2nd day after birth. The data were collected from January to May, 1999. The state of a newborn was classified and categorized to 6 states (deep sleep. light sleep, drowsy, quiet alert, active alert, crying) by Barnard. The movements of eyes, face and extremities, pulse and arterial oxygen were observed and recorded continuously from the start of sleep after feeding until the time of being woken for the next feeding by a trained nurse The data was analyzed by using paired t-test. The results of this study were as follows; 1. There was no significant difference in the length of sleeping time between the prone and the supine position. 2. There was no significant difference in the length and frequencies of each states(deep sleep, light sleep, drowsy, quiet alert, active alert, crying) between the prone and the supine position But the frequency of light sleep in the supine position was significantly higher than that of the prone position. 3 There was no significant difference In the numbers or eyes movements between the prone and the supine sleep position. But the amount of facial and extremity movement in the supine position was significantly higher than those in the prone position 4. There was no significant difference in the arterial oxygen content between the prone and the supine sleep position. 5. There was no significant difference in the heart rates between the prone and the supine sleep position. The above results indicated that the newborns in the prone Position moved less and slept deeper than those in the supine position. though there was no difference in the length of sleep or arterial oxygen content between the prone and the supine sleep Position. But. Nurses and mothers should consider the relationship between the sleep Position and SIDS suggested by previous researches. The infant's 'awakening' during sleep is a normal process and rather valuable because it can provide an opportunity to promote a stronger relationship between mother and baby. So, It is suggested that the supine sleep position is better than the prone sleep position for infants.

  • PDF

Force-finding of Tensegrity Structure using Optimization Technique

  • Lee, Sang Jin
    • Architectural research
    • /
    • v.17 no.1
    • /
    • pp.31-40
    • /
    • 2015
  • A simple force-finding process based on an optimization technique is proposed for tensegrity structures. For this purpose, the inverse problem of form-finding process is formulated. Therefore, the position vector of nodes and element connectivity information are provided as priori. Several benchmark tests are carried out to demonstrate the performance of the present force-finding process. In particular, the force density distributions of simplex tensegrity are thoroughly investigated with the important parameters such as the radius, height and twisting angle of simplex tensegrity. Finally, the force density distribution of arch tensegrity is produced by using the present force-finding process for a future reference solution.

Investigation of the Influence of Radius and Corner Position on the Residual Stress Distribution in the Vicinity of the Repaired Region via Directed Energy Deposition by using Finite Element Analysis (유한 요소 해석을 이용한 DED 공정의 코너 반경 및 위치에 따른 보수 영역 부근 잔류응력 분포 영향성 조사)

  • Alissultan, Aliyev;Lee, Kwang-Kyu;Ahn, Dong-Gyu
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.7
    • /
    • pp.33-40
    • /
    • 2021
  • Current industrial flow is directed toward reducing the usage of raw materials by reusing parts, which is referred to as a circular economy (CE). Repair is one of the most value-added approaches in CE, which can be efficiently accomplished via additive manufacturing. The repair technology of metallic parts via the directed energy deposition process, which includes the selective removal and redeposition of damaged regions of metallic parts. Residual stress characteristics depend on the shape of the part and the shape of the redeposition region. The objective of this study is to investigate the effects of the radius and corner position of the substrate on the residual stresses for repair by using finite element analysis (FEA). The residual stress distribution of the 45° angle groove at the edge of the circular shape models on the outer and inner radii was analytically investigated. The analysis was accomplished using SYSWELD software by applying a moving heat source with defined material properties and cooling conditions integrated into the FEA model. The results showed a similar pattern of concentrated stress distribution for all models except the 40-mm and 60-mm radii, for which the maximum stress locations were different. The maximum residual stresses are high but lower than the yield strength, suggesting the absence of cracks and fractures due to residual stresses.