• Title/Summary/Keyword: Position Estimation Error

Search Result 435, Processing Time 0.028 seconds

The FRTU-Based Intelligent Fault Location Determination Strategy in Ubiquitous Based Distribution Systems

  • Ko, Yun-Seok
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.192-198
    • /
    • 2008
  • This paper proposes a FRTU-based intelligent fault distance determination strategy in which each FRTU is able to avoid multiple estimations and reduce the level of estimation error by utilizing heuristic rules driven by voltage and current information collected by 1:1 communication with other FRTUs from the same zone in a ubiquitous-based distribution system. In the proposed method, each FRTU, at first, determines a fault zone and a fault path on the faulted zone based on the proposed heuristic rules which use its current data and the voltage data of its neighboring FRTUs as input data. Next, it determines the fault distance from its position based on the fault current estimated from the current data of the neighboring FRTUs. Finally, in order to prove the effectiveness of the proposed method, the diverse fault cases are simulated in several positions of the typical distribution system using the EMTP.

Sensor fusion based ambulatory system for indoor localization

  • Lee, Min-Yong;Lee, Soo-Yong
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.278-284
    • /
    • 2010
  • Indoor localization for pedestrian is the key technology for caring the elderly, the visually impaired and the handicapped in health care districts. It also becomes essential for the emergency responders where the GPS signal is not available. This paper presents newly developed pedestrian localization system using the gyro sensors, the magnetic compass and pressure sensors. Instead of using the accelerometer, the pedestrian gait is estimated from the gyro sensor measurements and the travel distance is estimated based on the gait kinematics. Fusing the gyro information and the magnetic compass information for heading angle estimation is presented with the error covariance analysis. A pressure sensor is used to identify the floor the pedestrian is walking on. A complete ambulatory system is implemented which estimates the pedestrian's 3D position and the heading.

An Indoor Localization Algorithm based on Improved Particle Filter and Directional Probabilistic Data Association for Wireless Sensor Network

  • Long Cheng;Jiayin Guan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.11
    • /
    • pp.3145-3162
    • /
    • 2023
  • As an important technology of the internetwork, wireless sensor network technique plays an important role in indoor localization. Non-line-of-sight (NLOS) problem has a large effect on indoor location accuracy. A location algorithm based on improved particle filter and directional probabilistic data association (IPF-DPDA) for WSN is proposed to solve NLOS issue in this paper. Firstly, the improved particle filter is proposed to reduce error of measuring distance. Then the hypothesis test is used to detect whether measurements are in LOS situations or NLOS situations for N different groups. When there are measurements in the validation gate, the corresponding association probabilities are applied to weight retained position estimate to gain final location estimation. We have improved the traditional data association and added directional information on the original basis. If the validation gate has no measured value, we make use of the Kalman prediction value to renew. Finally, simulation and experimental results show that compared with existing methods, the IPF-DPDA performance better.

Gauss-Newton Based Estimation for Moving Emitter Location Using TDOA/FDOA Measurements and Its Analysis (TDOA/FDOA 정보를 이용한 Gauss-Newton 기법 기반의 이동 신호원 위치 및 속도 추정 방법과 성능 분석)

  • Kim, Yong-Hee;Kim, Dong-Gyu;Han, Jin-Woo;Song, Kyu-Ha;Kim, Hyoung-Nam
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.6
    • /
    • pp.62-71
    • /
    • 2013
  • The passive emitter location method using TDOA and FDOA measurements has higher accuracy comparing to the single TDOA or FDOA based method. Moreover, it is able to estimate the velocity vector of a moving platform. Recently, several non-iterative methods were suggested using the nuisance parameter but the common reference sensor is needed for each pair of sensors. They show also relatively low performance in the case of a long range between the sensor groups and the emitter. To solve this, we derive the estimation method of the position and velocity of a moving platform based on the Gauss-Newton method. In addition, to analyze the estimation performance of the position and velocity, respectively, we decompose the CRLB matrix into each subspace. Simulation results show the estimation performance of the derived method and the CEP planes according to the given geometry of the sensors.

A Study on Improving Accuracy of Subway Location Tracking using WiFi Fingerprinting (WiFi 핑거프린트를 이용한 지하철 위치 추적 정확성 향상을 위한 연구)

  • An, Taeki;Ahn, Chihyung;Nam, Myungwoo;Park, Jinhong;Lee, Youngseok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.1
    • /
    • pp.1-8
    • /
    • 2016
  • In this study, an WiFi fingerprinting method based on the k-nn algorithm was applied to improve the accuracy of location tracking of a moving train on a platform and evaluate the performance to minimize the estimation error of location tracking. The data related to the position of the moving train are monitored by the control center for trains and used widely for the safety and comfort of passengers. The train location tracking methods based on WiFi installed by telecom companies were evaluated. In this study, a simulator was developed to consider the environments of two cases; in already installed WiFi devices and new installed WiFi devices. The developed simulator can simulate the localized estimation of the position under a variety of conditions, such as the number of WiFi devices, the area of platform and entry velocity of train. To apply location tracking algorithms, a k-nn algorithm and fuzzy k-nn algorithm were applied selectively according to the underlying condition and also four distance measurement algorithms were applied to compare the error of location tracking. In conclusion, the best method to estimate train location tracking is a combination of the k-nn algorithm and Minkoski distance measurement at a 0.5m grid unit and 8 WiFi AP installed.

Implementation of an Algorithm for the Estimation of Range and Direction of an Underwater Vehicle Using MFSK Signals (MFSK를 이용한 잠수정의 거리 및 방향 예측알고리즘 구현)

  • KIM SEA-MOON;LEE PAN-MOOK;LEE CHONG-MOO;LIM YONG-KON
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.249-256
    • /
    • 2004
  • KRISO/KORDI is currently developing a deep-sea unmanned underwater vehicle (UUV) system which is composed of a launcher, an ROV, and an AUV. Two USBL acoustic positioning systems will be used for UUV's navigation. One is for the deep sea positioning of all three vehicles and the other is for AUV's guidance to the docking device on the launcher. In order to increase the position accuracy MFSK(Multiple Frequency Shift Keying) broadband signal will be used. As the first step to the implementation of a USBL system, this paper studies USBL positioning algorithm using MFSK signals. Firstly, the characteristics of MFSK signal is described with various MFSK parameters: number of frequencies, frequency step, center frequency, and pulse length. Time and phase delays between two received signals are estimated by using cross-correlation and cross-spectrum methods. Finally an USBL positioning algorithm is derived by converting the delays to difference of distances and applying trigonometry. The simulation results show that the position accuracy is improved highly when both cross-correlation and cross-spectrum of MFSK signals are used simultaneously.

  • PDF

Matched-target Model Inversion for the Position Estimation of Moving Targets (정합-표적모델 역산을 이용한 기동 표적의 위치 추정)

  • 장덕홍;박홍배;김성일;류존하;김광태
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.7
    • /
    • pp.562-572
    • /
    • 2003
  • A matched-target model inversion method was developed for a passive sonar to estimate the position of moving targets. Based on the well known matched-field processing in underwater acoustics, the method finds target position by matching the measured target directions and frequencies with the corresponding values of the proposed target model. For the efficient and accurate estimations, the parameter searching was accomplished using a hybrid optimizing method, which first starts with a global optimization such as generic algorithm or simulated annealing then applies a local optimization of a simple down hill algorithm. The suggested method was testified using simulations for three different moving scenarios. The simulation results showed that the method is robust in convergence, even under the situation of over 5 times standard deviation of Gaussian distribution of measured error, and is practical in calculation time as well.

Ray backpropagation-based ship localization (음선 역전파 기반의 선박 위치 추정)

  • Cho, Seong-il;Byun, Gihoon;Byun, Sung-Hoon;Kim, J.S.
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.4
    • /
    • pp.196-205
    • /
    • 2018
  • This paper presents an algorithm for passive localization of a ship by applying the ray back-propagation technique to the ship radiation noise data. The previous method [S. H. Abadi, D. Rouseff and D. R. Dowling, J. Acoust. Soc. Am. 131, 2599-2610 (2012)] estimates the position of a sound source in the near-field environment with no array tilt by using the RBD (Ray-based Blind Deconvolution) and ray back-propagation techniques. However, when there exists an array tilt, the above method leads to a large position estimation error. In order to overcome the problem, this study proposes an algorithm that estimates the position of a sound source by correcting the array tilt using the RBD and ray back-propagation techniques. The proposed algorithm was verified by using the ship noise of SAVEX15 (Shallow-water Acoustic Variability EXperiment in 2015) experimental data.

Flight Path Measurement of Drones Using Microphone Array and Performance Improvement Method Using Unscented Kalman Filter (마이크로폰 어레이를 이용한 드론의 비행경로 측정과 무향칼만필터를 이용한 성능 개선법에 대한 연구)

  • Lee, Jiwon;Go, Yeong-Ju;Kim, Seungkeum;Choi, Jong-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.12
    • /
    • pp.975-985
    • /
    • 2018
  • The drones have been developed for military purposes and are now used in many fields such as logistics, communications, agriculture, disaster, defense and media. As the range of use of drones increases, cases of abuse of drones are increasing. It is necessary to develop anti-drone technology to detect the position of unwanted drones using the physical phenomena that occur when the drones fly. In this paper, we estimate the DOA(direction of arrival) of the drone by using the acoustic signal generated when the drone is flying. In addition, the dynamics model of the drones was applied to the unscented kalman filter to improve the microphone array detection performance and reduce the error of the position estimation. Through simulation, the drone detection performance was predicted and verified through experiments.

Hybrid Algorithmic Framework Using IMU and WPS for Smart Phone Positioning Systems (스마트폰 IMU와 WPS를 결합한 복합 측위 방법론)

  • Kim, Jae-Hoon;Kang, Suk-Yon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.8
    • /
    • pp.663-673
    • /
    • 2013
  • The drastic growth of mobile communication and spreading of smart phone make the significant attention on Location Based Service. The one of most important things for vitalization of LBS is the accurate estimating position for mobile object. Focusing on IMU deployed in smart phone, we develop a hybrid positioning estimation framework with a combination of WPS. The developed approaches can strengthen the advantages of independent indoor applicability of IMU. The estimation of IMU is efficiently compensated by radio fingerprint based Wi-Fi Positioning System. We put a focus especially on the hybrid algorithmic framework. Compared on the existing approaches of WPS or IMU, we achieve the comparable higher performance on both of average error of estimation and deviation of errors. Furthermore test-bed based on smart phone platform is practically developed and all data have been harvested from the actual measurement of test indoor area. This can approve the practical usefulness of proposed framework.