• Title/Summary/Keyword: Position Estimation Error

Search Result 435, Processing Time 0.027 seconds

GPS/INS Integration using Fuzzy-based Kalman Filtering

  • Lim, Jung-Hyun;Ju, Gwang-Hyeok;Yoo, Chang-Sun;Hong, Sung-Kyung;Kwon, Tae-Yong;Ahn, Iee-Ki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.984-989
    • /
    • 2003
  • The integrated global position system (GPS) and inertial navigation system (INS) has been considered as a cost-effective way of providing an accurate and reliable navigation system for civil and military system. Even the integration of a navigation sensor as a supporting device requires the development of non-traditional approaches and algorithms. The objective of this paper is to assess the feasibility of integrated with GPS and INS information, to provide the navigation capability for long term accuracy of the integrated system. Advanced algorithms are used to integrate the GPS and INS sensor data. That is fuzzy inference system based Weighted Extended Kalman Filter(FWEKF) algorithm INS signal corrections to provided an accurate navigation system of the integrated GPS and INS. Repeatedly, these include INS error, calculated platform corrections using GPS outputs, velocity corrections, position correction and error model estimation for prediction. Therefore, the paper introduces the newly developed technology which is aimed at achieving high accuracy results with integrated system. Finally, in this paper are given the results of simulation tests of the integrated system and the results show very good performance

  • PDF

Automatic Focusing Vision System for Inspection of Size and Shape of Small Hole (소형(1mm이하) hole의 형태 및 크기 측정을 위한 자동초점 비젼검사기)

  • Han, Moon-Yong;Han, Hern-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.10
    • /
    • pp.80-86
    • /
    • 1999
  • Since the quality of the coated wires is in various applications dependant on the coating depth, accuracy of hole size of dies used for coating wires must be maintained precisely, in general within one micron. This paper proposes a new vision system which measures automatically the size and shape of small holes having diameters less than 1mm within an error limit of 1 micron. To quickly obtain the focused image, this paper proposes an estimation method of the camera position using only a couple of defocused hole images. It measures the distributions of light intensity around the image boundary and decides the direction and distance of a camera motion. The proposed system measures the size, shape distortion, inclination of the hole against the axis of the dies structure, to decides the acceptability of the dies for use. The proposed algorithm has been implemented using a cheap 640${\times}$480 image system and has shown an average size error of 1micron when measuring the dieses having 0.1mm to 1.0mm diameters. It can be applied to the inspection of the size and position of holes in PCB, too.

  • PDF

Integrated Sliding-Mode Sensorless Driver with Pre-driver and Current Sensing Circuit for Accurate Speed Control of PMSM

  • Heo, Sewan;Oh, Jimin;Kim, Minki;Suk, Jung-Hee;Yang, Yil Suk;Park, Ki-Tae;Kim, Jinsung
    • ETRI Journal
    • /
    • v.37 no.6
    • /
    • pp.1154-1164
    • /
    • 2015
  • This paper proposes a fully sensorless driver for a permanent magnet synchronous motor (PMSM) integrated with a digital motor controller and an analog pre-driver, including sensing circuits and estimators. In the motor controller, a position estimator estimates the back electromotive force and rotor position using a sliding-mode observer. In the pre-driver, drivers for the power devices are designed with a level shifter and isolation technique. In addition, a current sensing circuit measures a three-phase current. All of these circuits are integrated in a single chip such that the driver achieves control of the speed with high accuracy. Using an IC fabricated using a $0.18{\mu}m$ BCDMOS process, the performance was verified experimentally. The driver showed stable operation in spite of the variation in speed and load, a similar efficiency near 1% compared to a commercial driver, a low speed error of about 0.1%, and therefore good performance for the PMSM drive.

A Study on the Relative Positioning Technology based on Range Difference and Root Selection (신호원과의 거리 차이와 실근 선택 알고리즘을 이용한 상대위치 인식 기술 연구)

  • Oh, Jongtaek
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.5
    • /
    • pp.85-91
    • /
    • 2013
  • For location based service and context awareness services, accurate indoor positioning technology is essential. The TDOA method that uses the range difference between signal source and receivers for estimating the location of the signal source, has estimation error due to measurement error. In this paper, a new algorithm is proposed to select the real root among calculated roots using the range difference information, and the estimated position of the signal source shows good accuracy compared to the existing method.

New Sensorless Control Strategy for a Permanent Magnet Synchronous Motor based on an Instantaneous Reactive Power (순시무효전력을 이용한 영구자석 동기전동기의 새로운 센서리스 제어)

  • 최양광;김영석;한윤석
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.4
    • /
    • pp.247-254
    • /
    • 2004
  • The mechanical informations such as the rotor speed and angle are required to operate the Cylindrical Permanent Magnet Synchronous Motor(PMSM). A resolver or encoder is typically used to supply the mechanical informations. This position sensor adds length to the machine, raises system cost, increases rotor inertia and requires additional devices. As the result, there has been a significant interest in the development of sensorless strategies to eliminate the position sensor. This paper presents an implementation of the new sensorless speed comtrol scheme for a PMSM. In the proposed algorithm, the line currents are estimated by a observer and the estimated speed can be yielded from the voltage equation because the information of speed is included in back emf. But the speed estimation error between the estimated and the real speeds is occured by errors due to measuring the motor parameters and sensing the line current and the input voltage. To minimize the speed estimations error, the estimated speeds are compensated by using an instantaneous reactive power in synchronously rotating reference frame. In this paper, the proposed algorithm is not affected by mechanical motor parameters because the mechanical equation is not used. The effectiveness of algorithm is confirmed by the experiments.

Noise Reduction Algorithm For The Detection of Fine Ion Signals in Residual Gas Analyzer (잔류가스분석기의 질량 스펙트럼 검출 성능 향상을 위한 잡음제거 알고리즘)

  • Heo, Gyeongyong;Choi, Hun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.68 no.1
    • /
    • pp.102-107
    • /
    • 2019
  • This paper proposes a method to improve the mass spectral detection performance of the residual gas analyzer. By improving the mode estimation method for setting the threshold value and improving the additive noise elimination method, it is possible to detect mass spectrums having low peak values of the threshold level difficult to distinguish from noise. Ion signal blocks for each mass index with noise removed by the improved method are effective for eliminating invalid ion signals based on the linear and quadratic fittings. The mass spectrum can be obtained from the quadratic fitted curves for the reconstructed ion signal block using only the valid ion signals. In addition, the resolution of the mass spectrum can be improved by correcting the error caused by the shift of the spectral peak position. To verify the performance of the proposed method, computer simulations were performed using real ion signals obtained from the residual gas analysis system under development. The simulation results show that the proposed method is valid.

A Study on magnetic sensor calibration for indoor smartphone position tracking (스마트폰 실내 위치 추적을 위한 지자기 센서 보정에 관한 연구)

  • Lee, Dongwook;Oh, Jongtaek
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.6
    • /
    • pp.229-235
    • /
    • 2018
  • Research on indoor location tracking technology using smart phone is actively being carried out. Especially, in order to display the movement path of the smartphone on the map, the azimuth angle should be estimated by using the geomagnetic sensor built in most smart phones. Due to the distortion of the magnetic field due to the surrounding steel structure and the inclination of the smartphone, the estimation error of azimuthal angle may be occurred. In this paper, we propose a correction method of the geomagnetic sensor at the stationary state and a correction method for the inclination of the smartphone. We also propose a method to correct the azimuth error due to the difference between the magnetic north and the grid north.

Development of a CSGPS/DR Integrated System for High-precision Trajectory Estimation for the Purpose of Vehicle Navigation

  • Yoo, Sang-Hoon;Lim, Jeong-Min;Oh, Jeong-Hun;Kim, Ho-Beom;Lee, Kwang-Eog;Sung, Tae-Kyung
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.4 no.3
    • /
    • pp.123-130
    • /
    • 2015
  • In this study, a carrier smoothed global positioning system / dead reckoning (CSGPS/DR) integrated system for high-precision trajectory estimation for the purpose of vehicle navigation was proposed. Existing code-based GPS has a low position accuracy, and carrier-phase differential global positioning system (CPDGPS) has a long waiting time for high-precision positioning and has a problem of high cost due to the establishment of infrastructure. To resolve this, the continuity of a trajectory was guaranteed by integrating CSGPS and DR. The results of the experiment indicated that the trajectory precision of the code-based GPS showed an error performance of more than 30cm, while that of the CSGPS/DR integrated system showed an error performance of less than 10cm. Based on this, it was found that the trajectory precision of the proposed CSGPS/DR integrated system is superior to that of the code-based GPS.

Inertia Identification Algorithm for High Performance Speed Control of Electric Motor (고성능 전동기 속도제어를 위한 관성추정 알고리즘)

  • Lee Sang-Cheol;Kim Heung-Geun;Choi Jong-Woo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.5
    • /
    • pp.436-442
    • /
    • 2005
  • This paper proposes an estimation algorithm to find the moment of inertia, which is essential to design high performance controller for motor drive system. The algorithm finds the moment of inertia observing the position error signal, which contains an error information of moment of inertia, generated by speed observer. Moreover, the proposed algorithm is easily realized in the observer-based speed detection method. The simulation and experimental results are also presented to confirm the performance of moment of inertia estimation method, which shows that the moment of inertia converges to the actual value within several seconds. The speed control responses and the designed speed controller performance match well.

Estimation of Vertical Interaction Force to the End of a Surgical Instrument by Measuring Reaction Force to the Trocar Support (트로카 고정부에 작용하는 반력을 측정하여 수술도구 말단의 수직방향 상호작용 힘을 추정하는 방법)

  • Kim, Suyong;Kim, Cheongjun;Lee, Doo Yong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.8
    • /
    • pp.615-618
    • /
    • 2016
  • This paper proposes a method to estimate vertical interaction force to the end of the surgical instrument by measuring reaction force at the part supporting the trocar. Relation between the force to the trocar and the interaction force is derived using the beam theory. The vertical interaction force is modeled as a function of the reaction force to the trocar and the distance between the drape plate and the trocar. Experimental results show that error is induced by the asymmetric shape of the trocar tip because contact position between the instrument and the trocar tip is changed depending on the direction of the interaction force. The theoretical relation, therefore, is compensated and reduced. Average $L_2$ relative error of the estimated force in the x-direction and the y-direction is 5.81 % and 5.99 %, respectively.