• 제목/요약/키워드: Position Control Loop

검색결과 396건 처리시간 0.025초

선형 펄스 전동기의 특성 해석 (The Charcteristics Analysis of Linear Pulse Motor)

  • 조윤현;이광호;김성도
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제48권5호
    • /
    • pp.249-256
    • /
    • 1999
  • This paper describes static characteristics analysis of linear pulse motor(LPM) with two permanent magnets. Linear pulse motors are finding a wide range of application for the Factory-Automation or the Office-Automation. Typically, LPM provides for a reliable and precise control of position, velocity, or acceleration without using a closed-loop system. Some of the advantages of LPMs are ease of control, step multiplication, static and dynamic positioning, and locking force. The flux density and thrust of LPM is computed by the FEM and magnetic equivalent circuits which considered the magnetic nonlinear phenomena. The result of characteristics analysis are shown as the flux, the air gap reluctance and the thrust. The velocity and position characteristics as a function of unit step input is measured. To estimate the unit step response charecteristic of LPM, the simulation results by Matlab and the experimental results is compared.

  • PDF

동적 보정을 이용한 비주얼 서보잉에서 안정성에 관한 연구 (A Stability Study on Visual Servoing using Dynamic Calibration)

  • 김진대;조영식;이상화;이재원
    • 한국정밀공학회지
    • /
    • 제20권10호
    • /
    • pp.82-88
    • /
    • 2003
  • Many visual servoing algorithms have been recently developed by the robot vision researchers. They do not, however, consider the stability of servoing system. The camera calibration is the most important factor to the control stability and performance of position based visual servoing. In this article we describe the ECL(End Point Closed Loop) servoing can make no steady state error for the control of 6-DOF robot of which accuracy is dependent on the camera calibration and kinematics. And we propose a dynamic calibration algorithm, which can improve stability and performance of ECL visual servoing. To verify the potential of our approach, we run assembly experiments and present our finding.

Flux Sliding-mode Observer Design for Sensorless Control of Dual Three-phase Interior Permanent Magnet Synchronous Motor

  • Shen, Jian-Qing;Yuan, Lei;Chen, Ming-Liang;Xie, Zhen
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권5호
    • /
    • pp.1614-1622
    • /
    • 2014
  • A novel equivalent flux sliding-mode observer (SMO) is proposed for dual three-phase interior permanent magnet synchronous motor (DT-IPMSM) drive system in this paper. The DT-IPMSM has two sets of Y-connected stator three-phase windings spatially shifted by 30 electrical degrees. In this method, the sensorless drive system employs a flux SMO with soft phase-locked loop method for rotor speed and position estimation, not only are low-pass filter and phase compensation module eliminated, but also estimation accuracy is improved. Meanwhile, to get the regulator parameters of current control, the inner current loop is realized using a decoupling and diagonal internal model control algorithm. Experiment results of 2MW-level DT-IPMSM drives system show that the proposed method has good dynamic and static performances.

Torque-Angle-Based Direct Torque Control for Interior Permanent-Magnet Synchronous Motor Drivers in Electric Vehicles

  • Qiu, Xin;Huang, Wenxin;Bu, Feifei
    • Journal of Power Electronics
    • /
    • 제13권6호
    • /
    • pp.964-974
    • /
    • 2013
  • A modified direct torque control (DTC) method based on torque angle is proposed for interior permanent-magnet synchronous motor (IPMSM) drivers used in electric vehicles (EVs). Given the close relationship between torque and torque angle, proper voltage vectors are selected by the proposed DTC method to change the torque angle rapidly and regulate the torque quickly. The amplitude and angle of the voltage vectors are determined by the torque loop and stator flux-linkage loop, respectively, with the help of the position of the stator flux linkage. Furthermore, to satisfy the torque performance request of EVs, the nonlinear dead-time of the invertor caused by parasitic capacitances is considered and compensated to improve steady torque performance. The stable operation region of the IPMSM DTC driver for voltage and current limits is investigated for reliability. The experimental results prove that the proposed DTC has good torque performance with a brief control structure.

공압인공근육을 이용한 조작기 위치의 강인제어 (Robust Control of the Position of a Manipulator Using Pneumatic Artificial Muscle)

  • 박노철;양현석;박영필
    • 대한기계학회논문집A
    • /
    • 제20권6호
    • /
    • pp.1882-1892
    • /
    • 1996
  • This paper is concerned with the position control of the ond degree-of freedom manipulator using pneumatic artificial muscle actuator which is built to have a proper compliance. For t his pneumatic artificial muscle actuator though, it is difficult to make an effective control scheme due to the nonlinearity and uncertainties on the dynamics of the actuator. In this paper, a third-order equation of motion is derived for the actuator including the dynamics of the pneumatic servovalve. Later, various modeling uncertainties due to the nonlinearity and unmodeled dynamics of the servo vlave and the actuator are taken care of, as a trade-off between the closed-loop performance of the controlled system and its robustness to uncertainties. A controller using .mu. synthesis thchnique is designed, and robust performance against measurement noise, various modeling uncertainties due to the dynamics of the servo valve and actuator is achieved. The effectiveness of the proposed control methods is illustrated through simulations and experiments.

Fractional-Order Hold기법을 이용한 섭동 추정기의 슬라이딩 모드 제어에 적용 (Application of Perturbation Estimation using Fractional-Order Hold Technique to Sliding Mode Control)

  • 남윤주;이육형;박명관
    • 한국정밀공학회지
    • /
    • 제23권1호
    • /
    • pp.121-128
    • /
    • 2006
  • This paper deals with the application of enhanced perturbation estimation (SMCEPE) to sliding mode control of a dynamic system in the presence of perturbations including external disturbances, unpredictable parameter variations, and unstructured dynamics. Compared to conventional sliding mode control (SMC) and sliding mode control with perturbation estimation (SMCPE), the proposed one can offer robust control performances under serious control conditions, such as fast dynamic perturbations and slow loop-closure speeds, without a priori knowledge on upper bounds of perturbations. The perturbation estimator in SHCEPE also has more adaptability owing to the fractional-order hold technique. The effectiveness and superiority of the proposed control strategy are demonstrated by a series of simulations on the position tracking control of a two-link robot manipulator.

조미동 구동기의 반복추종제어에 관한 연구 (A Study on Repetitive Tracking Control of a Coarse-Fine Actuator)

  • 최기상;오종현;최기흥
    • 전자공학회논문지T
    • /
    • 제36T권4호
    • /
    • pp.38-46
    • /
    • 1999
  • 본 논문에서는 조미동 구동기의 반복추종제어에 관하여 논의한다. 제안되는 시스템은 조동구동기로 선형 자기드라이브를, 미동구동기로 선형 압전구동기를 사용하여 구성된다. 특히, 선형 자기드라이브에 내재된 비선형 마찰과 선형 압전구동기의 이력현상이 먼저 모델링되고 되먹임선형화 루프가 이들을 추종제어에 사용한다. 주기적인 입력신호를 추종하는 경우 이를 더욱 확장하려 반복제어 알고리즘을 포함하도록 제어기를 설계한다. 즉, 반복제어기는 되먹임선형화가 적용된 PID 제어기에 설치된다. 실험결과에 의하면 정현파 입력을 추종하는 경우 PID 제어기에 되먹임선형화와 반복제어기를 함께 적용함으로써 추종성능을 크게 향상시킬 수 있는 것으로 나타났다.

  • PDF

A Sensorless Switched Reluctance Drive System Based on the Improved Simplified Flux Method

  • Li, Zhenguo;Song, Andong;Ahn, Jin-Woo
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • 제1권4호
    • /
    • pp.477-482
    • /
    • 2012
  • This paper describes a new rotor position sensorless control method for SRM drives based on an improved simplified flux linkage method. In the traditional simplified flux linkage method, every phases take turns conduction and current chopping control method is used. Every phases take turns conduction means turning on the incoming working phase while turning off the working phase. This conduction mode causes coupling between turn-on and turn-off angles, which goes against optimal efficiency or torque ripple minimization with sensorless speed control. In the improved simplified flux linkage method, turn-off angle is calculated by flux loop, the turn-on angle can be given arbitrarily and has no relations with the turn-off angle, and the current chopping control method is used. The speed and rotor position can be estimated then. Finally, a sensorless SRM speed control system and an experiment platform with DSP are built and validity of this method is confirmed.

Position estimation and control of SMA actuators based on electrical resistance measurement

  • Song, Gangbing;Ma, Ning;Lee, Ho-Jun
    • Smart Structures and Systems
    • /
    • 제3권2호
    • /
    • pp.189-200
    • /
    • 2007
  • As a functional material, shape memory alloy (SMA) has attracted much attention and research effort to explore its unique properties and its applications in the past few decades. Some of its properties, in particular the electrical resistance (ER) based self-sensing property of SMA, have not been fully studied. Electrical resistance of an SMA wire varies during its phase transformation. This variation is an inherent property of the SMA wire, although it is highly nonlinear with hysteresis. The relationship between the displacement and the electrical resistance of an SMA wire is deterministic and repeatable to some degree, therefore enabling the self-sensing ability of the SMA. The potential of this self-sensing ability has not received sufficient exploration so far, and even the previous studies in literature lack generality. This paper concerns the utilization of the self-sensing property of a spring-biased Nickel-Titanium (Nitinol) SMA actuator for two applications: ER feedback position control of an SMA actuator without a position sensor, and estimation of the opening of a SMA actuated valve. The use of the self-sensing property eliminates the need for a position sensor, therefore reducing the cost and size of an SMA actuator assembly. Two experimental apparatuses are fabricated to facilitate the two proposed applications, respectively. Based on open-loop testing results, the curve fitting technique is used to represent the nonlinear relationships between the displacement and the electrical resistance of the two SMA wire actuators. Using the mathematical models of the two SMA actuators, respectively, a proportional plus derivative controller is designed for control of the SMA wire actuator using only electrical resistance feedback. Consequently, the opening of the SMA actuated valve can be estimated without using an extra sensor.

공압식 러버 액츄에이터를 사용한 경량 로봇 팔의 제작에 관한 연구 (A study on the development of the light weight robot arm using pneumatic rubber actuator)

  • 김연호;정명진
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1991년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 22-24 Oct. 1991
    • /
    • pp.523-527
    • /
    • 1991
  • A rubber pneumatic controlled actuator is a new actuator. It is very light With a high power-to-weight ratio. In this thesis, a control method for a two link robot arm using the rubber actuator is developed. The structure of the servo control is made up of two sections. The position control is performed by PID feedback control. The air pressure is controlled by Servo Valve Unit driven by PWM and the control input is compensated by software operation. The numerical simulation of this control method to two link robot arm is presented to verify the performance of the closed loop system. The actual control of the real two link robot arm with rubber actuator is taken and its results are discussed.

  • PDF