• Title/Summary/Keyword: Position Control Loop

Search Result 396, Processing Time 0.215 seconds

Precision Position Control of Piezoelectric Actuator Using Feedforward Hysteresis Compensation and Neural Network (히스테리시스 앞먹임과 신경회로망을 이용한 압전 구동기의 정밀 위치제어)

  • Kim HyoungSeog;Lee Soo Hee;Ahn KyungKwan;Lee ByungRyong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.7 s.172
    • /
    • pp.94-101
    • /
    • 2005
  • This work proposes a new method for describing the hysteresis non-linearity of a piezoelectric actuator. The hysteresis behaviour of piezoelectric actuators, including the minor loop trajectory, are modeled by geometrical relationship between a reference major loop and its minor loops. This hysteresis model is transformed into inverse hysteresis model in order to output compensated voltage with regard to the given input displacement. A feedforward neural network, which is trained by a feedback PID control module, is incorporated to the inverse hysteresis model to compensate unknown dynamics of the piezoelectric system. To show the feasibility of the proposed feedforward-feedback controller, some experiments have been carried out and the tracking performance was compared to that of simple PTD controller.

Fuzzy Methods for the design of Digital Controllers with Intelligent Calibration (지능형 자동 보정화 디지털 제어기 설계를 위한 퍼지 기법)

  • 나승유;박민상
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.10a
    • /
    • pp.187-190
    • /
    • 1998
  • The values of physical components of the plants and controllers as well as the relevant environmental conditions change in time, thus the output performance can be deteriorated during the operating span of the system. Naturally the duty of calibration or the prevention of performance deterioration due to excessive component sensitivity should be provided to the control system. The proposed controller, whenever necessary, measures the open-loop and close-loop characteristics, and then calculates the offset and sensor gain correction values based on the prepared standard measurements It is applied to the control of a flexible link system with the gain and offset calibration problems in the light sensor module for position to show the applicability. In this paper, we propose a digital controller which has the capability of calibration gain and offset adjustment using fuzzy methods.

  • PDF

High-Accuracy Motion Control of Linear Synchronous Motor Using Reinforcement Learning (강화학습에 의한 선형동기 모터의 고정밀 제어)

  • Jeong, Seong-Hyen;Park, Jung-Il
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.12
    • /
    • pp.1379-1387
    • /
    • 2011
  • A PID-feedforward controller and Robust Internal-loop Compensator (RIC) based on reinforcement learning using random variable sequences are provided to auto-tune parameters for each controller in the high-precision position control of PMLSM (Permanent Magnet Linear Synchronous Motor). Experiments prove the well-tuned controller could be reduced up to one-fifth level of tracking errors before learning by reinforcement learning. The RIC compared to the PID-feedforward controller showed approximately twice the performance in reducing tracking error and disturbance rejection.

A Stabilisation Scheme of a Stepping Motor for a Fiber Optic Gyrocompass System (광파이버 자이로콤파스 시스템을 위한 스텝핑모터의 안정화)

  • Kwon, Yong-Soo;Jung, Sam
    • Proceedings of the KIEE Conference
    • /
    • 1997.07a
    • /
    • pp.152-154
    • /
    • 1997
  • This paper describes a study of a stabilisation scheme of a stepping motor in the driving systems of the Fiber Optic Gyrocompass absolutely required a constant speed and a precise position control with fine step angle. The new stabilisation scheme combining microstepping control and frequency modulation is developed which enables the experimental machine to be capable of stable running to a stepping frequency in the range 5 times the open-loop stall frequency.

  • PDF

Integrated Structure and Controller Design of Single-Link Flexible Arm for Improving the Performance of Position Control (유연 외팔보의 위치제어 성능향상을 위한 형상 및 제어기 통합설계)

  • Lee, Min-U;Park, Jang-Hyeon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.10
    • /
    • pp.120-129
    • /
    • 2002
  • An integrated structure and controller design approach for rotating cantilever beam is presented. An optimization method is developed for improving positioning performance considering the elastic deformations during high speed rotation and adopting the beam shape and the control gains as design variables. For this end, a dynamic model is setup by the finite element method according to the shape of the beam. The mass and stiffness of the beam are distributed in such a way that the closed-loop poles of the control system should be located leftmost in the complex s-plane. For optimization method, the simulated annealing method is employed which has higher probability to find the global minimum than the gradient-based down-hill methods. Sequential design and simultaneous design methods are proposed to obtain the optimal shape and controller. Simulations are performed with new designs by the two methods to verify the effectiveness of the approach and the results show that the settling time is improved for point-to-point position controls.

Improved Control Algorithm Development for Control Element Drive Mechanism Control System (제어봉구동장치제어계통의 개선된 제어 알고리즘 개발)

  • Kim, Byeong-Moon;Lee, Young-Ryul;Han, Jae-Bok;You, Joon
    • Proceedings of the KIEE Conference
    • /
    • 1995.07b
    • /
    • pp.761-765
    • /
    • 1995
  • The old Timing Controller for Control Element Drive Mechanism (CEDM) is designed as an open loop control system because it is difficult to mount sensors within the Control Element Drive Mechanism(CEDM) which is operating under the pressure boundary of the reactor vessel. In this work new method which can be used to detect the CEDM operational conditions without mounting sensors within the CEDM housing is developed in order to resolve problems of the old Timing Controller. By using the developed new method, the new Timing Controller for the CEDM is designed as a closed loop controller which has features of the control rod drop prevention, fine position control and the coil life time extension. The algorithm developed under closed loop control concept resolves most problems occurred in the old Timing Controller and improves the performance and reliability of the system. During designing and testing of the Timing Controller algorithm, the real time CEDM simulator developed here was used. And all functions of the developed algorithm were verified using CEDM simulator with the real data collected from the site. The results show that the Timing Controller performs its intended functions properly.

  • PDF

Initial Pole Position Estimation of Surface PM-LSM

  • Kim, Tae-Woong;Junichi Watanabe;Sumitoshi Sonoda;Junji Hirai
    • Journal of Power Electronics
    • /
    • v.1 no.1
    • /
    • pp.1-8
    • /
    • 2001
  • The elimination of a pole sensor is desirable due to the low-cost requirement, the compactness, and the applied drives. This paper proposes the algorithm for the initial pole-position estimation of a surface permanent magnet linear synchronous motor (PM-LSM), which is carried out under the closed loop control without a pole sensor and is insensitive to the motor parameters. This algorithm is based on the principle that the initial pole position (IPP) is estimated by the trigonometric function of the two reference currents. The effectiveness of the proposed algorithm is confirmed by testing a surface PM-LSM with large disturbance, which result shows that IPP is well estimated within a satisfied moving-distance and a shorter estimation taken-time even if large disturbance such as cogging and friction is existed.

  • PDF

The Relationships between the Methods of the Epidural Catheter Fixation and the Postoperative Position Change of the Catheter (경막외 카테터의 고정방법과 수술후 카테터의 위치 변화와의 관계)

  • Shin, Woo-Jong;Yeom, Jong-Hoon;Kim, Hee-Soo;Kim, Yong-Chul;Lee, Dong-Ho;Kim, Kyung-Hun;Shim, Jae-Choi;Hwang, Jung-Hye
    • The Korean Journal of Pain
    • /
    • v.10 no.1
    • /
    • pp.64-68
    • /
    • 1997
  • Background : Patients mover more as their post operative pain decrease. With the increase in movement there will be a tendency for the epidural catheter to migrate out of its original position. We studied 2 methods of fixation of the epidural catheter and the changes in position as related to patient movement. Methods : Patients were divided into two groups. Patients in Group A had their epidural catheter formed with a circular loop at the (skin) exit site then directed over the right shoulder. Group B had the epidural catheter flxed with Fixomull on the exit site without forming a circular loop. At the end of the operation, 3 mg of epidural morphine was injected via indwelling epidural catheter for postoperative pain control. Epidural catheter depth was measured 24 hours later. Results : The overall rate of migration of epidural catheter was 61.9%. In Group A, number of patients whose catheter migrated over 0.5 cm was 23(69.9%) with 14 inward migration and 9 outward migration. Group B had 16(53%) patients catheters migrate over 0.5 cm, with 2 patients having inward migration and 14 outward migration. Conclusions : Although the rates of migration of epidural catheter were similar for both groups, the number of inner migration of catheter, which could result serious complications, was significantly lower in Group B than Group A. Based on our results we recommend the epidural catheter be fixed without a circular loop.

  • PDF

Compliance Control of a 3-Link Electro-Hydraulic Manipulator (3축 전기유압 매니퓰레이터의 컴플라이언스 제어)

  • 안경관;표성만
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.1
    • /
    • pp.101-108
    • /
    • 2004
  • An electro-hydraulic manipulator using hydraulic actuators has many nonlinear elements, and its parameter fluctuations are greater than those of an electrically driven manipulator. So it is relatively difficult to obtain stable control performance. In this report, we applied disturbance estimation and compensation type robust control to all axes in a 3-link electro-hydraulic manipulator. From the results of experiment, it was confirmed that the performance of trajectory tracking and attitude regulating is greatly improved by the disturbance observer, which model is the same for each axis. On the other hand, for the autonomous assembly tasks, it is said that compliance control is one of the most available methods. Therefore we proposed compliance control which is based on the position control by disturbance observer for our manipulator system. To realize more stable contact work, the states in the compliance loop are feedback, where not only displacement but also velocity and acceleration are considered. And we applied this compliance control to Peg-in-Hole insertion task and analyzed mechanical relation between peg and hole. Also we proposed new method of shifting the position of end-effector periodically for the purpose of smooth insertion. As a result of using this method, it is experimentally confirmed that Peg-in-Hole insertion task with a clearance of 0.05[mm]can be achieved.

Tip Position Command Tracking of a Flexible Beam Using Active Vibration Control (능동진동제어를 이용한 유연보의 끝단위치 명령추종연구)

  • Lee, Young-Sup;Elliott, Stephen-J
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.643-648
    • /
    • 2003
  • The problem considered in this paper is that the tip position of a flexible cantilever beam is controlled to follow a command signal, using a pair of piezoelectric actuators at the clamped end. The beam is lightly damped and so the natural transient response is rather long, and also since the sensor and actuator are not collocated, the plant response is non-minimum phase. Two control strategies were investigated. The first involved conventional PID control in which the feedback gains were adjusted to give the fastest closed-loop response to a step input. The second control strategy was based on an internal model control (IMC) architecture. The control filter in the IMC controller was a digital FIR device designed to minimize the expectation of the mean square tracking error. The IMC controller designed fur the beam was found to have very much reduced settling times to a step input compared with those of the PID controller.

  • PDF