• 제목/요약/키워드: Position Accuracy

검색결과 2,345건 처리시간 0.028초

집광식 태양열 집열기의 태양추적장치를 위한 태양위치계산 (Computation of Sun Position for the Sun Tracking Control System of Solar Concentrator)

  • 박영칠;강용혁
    • 태양에너지
    • /
    • 제18권4호
    • /
    • pp.87-94
    • /
    • 1998
  • This work presents a method to compute the sun position(azimuth and elevation), sunrise and sunset times. Accurate computation of sun position is very important to the precise tracking of the sun for the solar concentrator, which enables the maximum collection of solar energy. Methods to compute the sun position are available in the literature already. However most of them do not have accuracy verification, thus makes hard in selecting the most accurate sun position computation method. We first select the most accurate sun position computation method among the methods presented in the literature by comparing the computed sun position with Korean Almanac of Korea Astronomy Observatory. Then a procedure to compute the sunrise and sunset times is presented. Computed sun position shows $0.02^{\circ},\;0.6^{\circ}$ and one minute differences in azimuth, elevation and sunrise/sunset times respectively compared with Korean Almanac.

  • PDF

Position Estimator Employing Kalman Filter for PM Motors Driven with Binary-type Hall Sensors

  • Lee, Dong-Myung
    • Journal of Electrical Engineering and Technology
    • /
    • 제11권4호
    • /
    • pp.931-938
    • /
    • 2016
  • Application of vector control scheme for consumer products is enlarging to improve control performance. For the field-oriented control, accurate position detection is essential and generally requires expensive sensors. On the other hand, cost-reduction is important in home appliances, so that binary-type Hall-effect sensors are commonly used rather than using an expensive sensor such as an encoder. The control performance is directly influenced by the accuracy of the position information, and there exist non-uniformities related to Hall sensors in electrical and mechanical aspects, which result in distorted position information. Therefore, to get high-precision position information from low-resolution Hall sensors, this paper proposes a new position estimator consisting of a Kalman filter and feedforward compensation scheme, which generates a linearly changing position signal. The efficacy of the proposed scheme is verified by simulation and experimental results carried out with a 48-pole permanent magnet motor.

로보트 accuracy향상을 위한 kinematic identification (Kinematic Iidentification for Improving Robot Accuracy)

  • 조선휘;김문상;김귀식;장현상
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1989년도 한국자동제어학술회의논문집; Seoul, Korea; 27-28 Oct. 1989
    • /
    • pp.131-137
    • /
    • 1989
  • The effect of kinematic model choice on robot calibration is examined. This paper presents a complete formulation to identify the actual robot kinematic parameters directly from position data. The method presented in this paper applies to any serial link manipulator with arbitrary order and combination of revolute and prismatic joint.

  • PDF

비전을 이용한 펀칭위치 제어 시스템 (Punching Position Control by Vision System)

  • 이성철;이영춘;심기중
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.981-984
    • /
    • 2004
  • This paper is about the development of Automatic FPC punching instrument. FPC(flexible printed circuit) is used to detect the contact position of K/B and button like a cellular phone. Depending on the quality of the printed ink and position of reference punching point to the FPC, the resistance and current are varied to the malfunctioning values. The size of reference punching point is 2mm and the above. Because the punching operation is done manually, the accuracy of the punching degree is varied with operator's condition. Recently, The punching accuracy has deteriorated severely to the 2mm punching reference hall so that assembly of the K/B has hardly done. To improve this manual punching operation to the FPC, automatic FPC punching system is introduced. Precise mechanical parts like a 5-step stepping motor and ball screw mechanism are designed and tested and low cost PC camera is used for the sake of cost down instead of using high quality vision systems for the FA. Test algorithm shows good results to the designed automatic punching system.

  • PDF

CDGPS를 위한 LSAST 미지정수 추정기법 개선에 관한 연구 (A study on improving LSAST ambiguity resolution for CDGPS)

  • 이기훈
    • 한국항공우주학회지
    • /
    • 제34권5호
    • /
    • pp.74-80
    • /
    • 2006
  • 1980년대부터 민간에 개방된 GPS는 C/A코드의 도달시간을 측정하여 위치를 계산하고, 반송파의 도플러 주파수를 측정하여 속도를 계산한다. 위치정확도를 향상시키기 위하여 공통오차를 제거하는 DGPS 기법과 반송파 위상을 이용하여 수cm 내의 정확도를 가질 수 있는 CDGPS 기법이 1990년대부터 개발되기 시작하였다. 본 논문에서는 CDGPS를 위해 LSAST 미지정수 추정기법을 개선하여 계산효율 및 신뢰도를 높이고, 단일 주파수 GPS 수신기를 이용하여 움직이는 항체의 상대위치를 수cm 내의 정확도로 측정한 실험결과를 INS의 위치와 비교하여 제시한다. 이러한 결과는 추후 정밀관성항법장치, 무인자율주행, 측지 및 정밀지도제작 등에 유용하게 쓰일 수 있다.

MULTI-SENSOR DATA FUSION FOR FUTURE TELEMATICS APPLICATION

  • Kim, Seong-Baek;Lee, Seung-Yong;Choi, Ji-Hoon;Choi, Kyung-Ho;Jang, Byung-Tae
    • Journal of Astronomy and Space Sciences
    • /
    • 제20권4호
    • /
    • pp.359-364
    • /
    • 2003
  • In this paper, we present multi-sensor data fusion for telematics application. Successful telematics can be realized through the integration of navigation and spatial information. The well-determined acquisition of vehicle's position plays a vital role in application service. The development of GPS is used to provide the navigation data, but the performance is limited in areas where poor satellite visibility environment exists. Hence, multi-sensor fusion including IMU (Inertial Measurement Unit), GPS(Global Positioning System), and DMI (Distance Measurement Indicator) is required to provide the vehicle's position to service provider and driver behind the wheel. The multi-sensor fusion is implemented via algorithm based on Kalman filtering technique. Navigation accuracy can be enhanced using this filtering approach. For the verification of fusion approach, land vehicle test was performed and the results were discussed. Results showed that the horizontal position errors were suppressed around 1 meter level accuracy under simulated non-GPS availability environment. Under normal GPS environment, the horizontal position errors were under 40㎝ in curve trajectory and 27㎝ in linear trajectory, which are definitely depending on vehicular dynamics.

Piezo Actuator를 이용한 초정밀 위치결정기구의 Computer Simulation 및 제어 성능평가 (Computer Simulation and Control performance evaluation of Ultra Precision Positioning Apparatus using Piezo Actuator)

  • 김재열;김영석;곽이구;한재호
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 추계학술대회 논문집
    • /
    • pp.118-122
    • /
    • 2000
  • Recently, High accuracy and precision are required in various industrial field especially, semiconductor manufacturing apparatus, Ultra precision positioning apparatus, Information field and so on. Positioning technology is a very important one among them. For composition of this technology, the development of system with high speed and high resolution is needed. At start point and end position vibration must be repressed on this system for composition of position control. This vibration is arisen nose, is increased setting time, is reduced accuracy. Especially, repressed for the lead with high speed. The small actuator with high speed and high resolution is need to repression against this residual vibration. This actuator is, for example, piezo actuator, piezoelectric material that converting from electronic signal to mechanical force is adequate material, beacause of control of control to position and force. In this study, piezo electric material is used to actuator, ultra precision positioning apparatus with stage of hinge structure is designed, simulation is performed, control performance is tested by producing apparatus. For easy usage and stability in industrial field, we perform to simulation and to position control test by digital PID controller.

  • PDF

A Study on the Applicability of the Kinematic and the Static GPS Methods for Coastal Ocean Structure Survey

  • Lee, Byung-Gul;Yang, Sung-Kee;Kang, In-Jun
    • 한국환경과학회지
    • /
    • 제11권2호
    • /
    • pp.103-110
    • /
    • 2002
  • The position fixing usually is determined by triangulation, traverse surveying and astronomy surveying. However, when the station is moving, it is impossible to determine its position continuously by the former method. By a satellite positioning method(GPS), this problem can be solved. In our study, we used two methods to determine the length and coordinate of a point position. One is a kinematic GPS method and the other is a static one. Each is based on carrier phase measurement and employs a relative position technique. We implemented observation experiments such as Geodimeter and DGPS(Differential GPS) successfully. To estimate the accuracy between the kinematic and static methods, we compared the results of Geodimeter, the kinematic, and the static. The results showed that the static is relatively a little more accurate than the kinematic. However, in the kinematic mode, when we received the GPS data for a long time, we found that the kinematic also had a high accuracy value for the length survey Finally, we applied the GPS to Jeju Harbor Breakwater to examine the applicability of GPS for coastal ocean structure based on the kinematics and the statics, respectively.

RFID를 이용한 이동로봇의 위치인식기술 (Localization of Mobile Robot Based on Radio Frequency Identification Devices)

  • 이현정;최규천;이민철;이장명
    • 제어로봇시스템학회논문지
    • /
    • 제12궈1호
    • /
    • pp.41-46
    • /
    • 2006
  • Ubiquitous location based services, offer helpful services anytime and anywhere by using real-time location information of objects based on ubiquitous network. Particularly, autonomous mobile robots can be a solution for various applications related to ubiquitous location based services, e.g. in hospitals, for cleaning, at airports or railway stations. However, a meaningful and still unsolved problem for most applications is to develop a robust and cheap positioning system. A typical example of position measurements is dead reckoning that is well known for providing a good short-term accuracy, being inexpensive and allowing very high sampling rates. However, the measurement always has some accumulated errors because the fundamental idea of dead reckoning is the integration of incremental motion information over time. The other hand, a localization system using RFID offers absolute position of robots regardless of elapsed time. We construct an absolute positioning system based on RFID and investigate how localization technique can be enhanced by RFID through experiment to measure the location of a mobile robot. Tags are placed on the floor at 5cm intervals in the shape of square in an arbitrary space and the accuracy of position measurement is investigated . To reduce the error and the variation of error, a weighting function based on Gaussian function is used. Different weighting values are applied to position data of tags since weighting values follow Gaussian function.

Validation of Geostationary Earth Orbit Satellite Ephemeris Generated from Satellite Laser Ranging

  • Oh, Hyungjik;Park, Eunseo;Lim, Hyung-Chul;Lee, Sang-Ryool;Choi, Jae-Dong;Park, Chandeok
    • Journal of Astronomy and Space Sciences
    • /
    • 제35권4호
    • /
    • pp.227-233
    • /
    • 2018
  • This study presents the generation and accuracy assessment of predicted orbital ephemeris based on satellite laser ranging (SLR) for geostationary Earth orbit (GEO) satellites. Two GEO satellites are considered: GEO-Korea Multi-Purpose Satellite (KOMPSAT)-2B (GK-2B) for simulational validation and Compass-G1 for real-world quality assessment. SLR-based orbit determination (OD) is proactively performed to generate orbital ephemeris. The length and the gap of the predicted orbital ephemeris were set by considering the consolidated prediction format (CPF). The resultant predicted ephemeris of GK-2B is directly compared with a pre-specified true orbit to show 17.461 m and 23.978 m, in 3D root-mean-square (RMS) position error and maximum position error for one day, respectively. The predicted ephemeris of Compass-G1 is overlapped with the Global Navigation Satellite System (GNSS) final orbit from the GeoForschungsZentrum (GFZ) analysis center (AC) to yield 36.760 m in 3D RMS position differences. It is also compared with the CPF orbit from the International Laser Ranging Service (ILRS) to present 109.888 m in 3D RMS position differences. These results imply that SLR-based orbital ephemeris can be an alternative candidate for improving the accuracy of commonly used radar-based orbital ephemeris for GEO satellites.