• Title/Summary/Keyword: Position Accuracy

Search Result 2,336, Processing Time 0.031 seconds

A study on the optimal geometrical placement of eLoran stations in Korea (eLoran 송신국 배치 최적화 방안 연구)

  • Lee, Chang-Bok;Shin, Mi-Young;Hwang, Sang-Wook;Lee, Sang-Jeong;Yang, Sung-Hoon
    • Journal of Navigation and Port Research
    • /
    • v.37 no.1
    • /
    • pp.35-40
    • /
    • 2013
  • In the eLoran navigation system, the dominant deterioration factors of navigation accuracy are the TOA measurement errors on user receiver and the GDOP between the receiver and the transmitters. But if the ASF data measured at dLoran reference station are provided for users through the Loran data channel, it will be possible to correct the TOA measurement errors. The position accuracy can be determined by the DOP depending on the geometry of receiver-transmitters, and their optimal placement improves the navigation accuracy. In this study we determined the geometric placement in case of up to six stations, and evaluated the performance of position accuracy for the receiver-transmitter geometry set of eLoran stations. The proposed geometry of eLoran stations can be referred for the construction of eLoran infrastructure meeting the capability of HEA for maritime, and time/frequency users in Korea.

A Study on Accuracy Analysis and Application of Postion Tracking Technique for Worker Safety Management in Underground Space Construction Field (지하공간 건설시공현장에서의 작업자 안전관리를 위한 위치추적기술 정확도 분석 및 활용 연구)

  • Seol, Moonhyung;Jang, Yonggu;Son, Myungchan;Kang, Injoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.8
    • /
    • pp.45-51
    • /
    • 2013
  • In the construction site of underground buildings which have severe environment such as dust, noise, vibration, the technology of rescue the builders in the construction site when accident occurs by tracking the location of the builders and express the mission of supervisor smoothly. In this study, in order to acquire the location information of the builders in the construction site of underground buildings by using MEMS INS and air pressure sensor, we firstly performed the field test in construction site, analyzed the location and the elevation accuracy based on the detected results, and then verified its practicality and rationality after all. As a result, we could acquire worker's position-accuracy within 10m in horizontal direction and 4m in vertical direction. Therefore we could judge availability in construction fields of underground structure.

Improvements on the Three-Dimensional Positioning of High Resolution Stereo Satellite Imagery (고해상도 스테레오 위성영상의 3차원 정확도 평가 및 향상)

  • Jeong, In-Jun;Lee, Chang-Kyung;Yun, Kong-Hyun
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.5
    • /
    • pp.617-625
    • /
    • 2014
  • The Rational Function Model has been used as a replacement sensor model in most commercial photogrammetric systems due to its capability of maintaining the accuracy of the physical sensor models. Although satellite images with rational polynomial coefficients have been used to determine three-dimensional position, it has limitations in the accuracy for large scale topographic mapping. In this study, high resolution stereo satellite images, QuickBird-2, were used to investigate how much the three-dimensional position accuracy was affected by the No. of ground control points, polynomial order, and distribution of GCPs. As the results, we can confirm that these experiments satisfy the accuracy requirements for horizontal and height position of 1:25,000 map scale.

Quality Assessment of Digital Surface Model Vertical Position Accuracies by Ground Control Point Location (지상기준점 선점 위치에 따른 DSM 높이 정확도 분석)

  • Lee, Jong Phil
    • Journal of Cadastre & Land InformatiX
    • /
    • v.51 no.1
    • /
    • pp.125-136
    • /
    • 2021
  • Recently, Unmanned Aerial Vehicle utilization and image processing technology for remote sensing have diversified remarkably with Orthophoto and Digital Surface Model. In particular, It uses more application fields such as spatial information analysis and hazardous areas as well as land surveying. This study analyses the accuracy of the coordinate on Orthophoto and DSM height on slope area with high and low differences by using UAV images. As the result of this study, in the case of GCP on 2D orthophoto, the location error was not produced significantly. The vertical position of the DSM showed the highest accuracy when the height difference between GCPs is under 30m(RMSEZ=0.07m). The location of the GCPs was divided into approximately 10m, 20m, 30m, and 40m with analysis for each of the eight points of GCP and inspection points in general. This study expects that producing both horizontal accuracy of Orthophoto and vertical accuracy of DSM using UAV on the sloped area which similar to this research area will help in spatial information fields.

The simulation for error analysis of a large scale laser digitizer system

  • Fujimoto, Ikumatsu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10b
    • /
    • pp.440-445
    • /
    • 1993
  • A two dimensional large scale laser digitizer with a cordless cursor was developed. The coordinate detecting scheme of this digitizer is fundamentally based on the triangulation method, in which two laser-rays are scanned by the rotating plane mirros, reflected backward by the cursor, reflected again by the rotating mirrors, and detected by optical sensors. From angles in which the cursor reflections are detected, we can determine the position of the cursor. But this method involves several problems about optical alignment and its calibration especially when it is applied to a large scale digitizer. In this paper, especially we propose simulation for error analysis with connection to angles measured at five control points which are needed to decide an appropriate model for calculating coordinates and optimal simulation for deciding the position of five control points to give the better coordinate accuracy. In this way, we realized the on-site calibration and on-site insurance of measurement accuracy with our appropriate model for calculating coordinates. The time required for on-site calibration is within 5 minutes and the average accuracy of 4m * 3m digitizer is about .+-.0.12mm.

A Study on the Calibration of Z-axis Depth of Cut using AE Signal in Micro-machining (마이크로 가공에서 AE 신호를 이용한 z 축 절삭깊이 보정에 관한 연구)

  • Kang I.S.;Kim J.H.;Kang M.C.;Lee K.Y.;Kim J.S.;Ahn J.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.410-413
    • /
    • 2005
  • There are technical requirements to manufacture large size functional parts with not only simple geometries like a flat or spherical surface but also sculptured geometries. In addition, the required machining accuracy for these parts is becoming more severe day-by-day. In general, the forms of machined parts are determined by relative position between the workpiece and the tool during cutting. To improve machining accuracy, the relative position error should be maintained within the required accuracy. This study deals with estimation and calibration of depth of cut using AE signal in micro-machining.

  • PDF

Digital Position Measurement with MLPE of PET detector using a Small Number of Photosensors (적은 수의 광센서를 사용한 PET 검출기의 최대우도함수를 적용한 디지털 위치 측정)

  • Kang, Seunghun;Lee, Seung-Jae
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.2
    • /
    • pp.151-156
    • /
    • 2022
  • A detector using a small number of photosensors was designed, and the position of a scintillation pixel that interacted with gamma rays through a maximum likelihood position estimation(MLPE) was measured as a digital position. For this purpose, simulation was performed using DETECT2000, which can simulate the movement of light within the scintillator, and the accuracy of position measurement was evaluated. A detector was configured using a 6 × 6 scintillation pixel array and 4 photosensors, and a gamma ray event was generated at the center of each scintillation pixel to create a look-up table through the ratio of acquired light. The gamma-ray event generated at the new position was applied as the input value of the MLPE, and the positiion of the scintillation pixel was converted into a digital positiion after comparison with the look-up table. All scintillation pixels were evaluated, and as a result, a high accuracy of 99.1% was obtained. When this method is applied to the currently usesd system, it is concidered that the process of determining the position of the scintillation pixel will be simplified.

Development of Position Indicator for System-Integrated Reactor SMART (일체형원자로 SMART의 제어봉 위치지시기 개발)

  • Yu, Je-Yong;Kim, Ji-Ho;Huh, Hyung;Kim, Jong-In;Chang, Moon-Hee
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.921-926
    • /
    • 2001
  • The reliability and accuracy of the information on control rod position are very important to the reactor safety and the design of the core protection system. In this study, a thorough investigation on the RSPT(Reed Switch Position Transmitter) type control rod position indication system and its actual implementation in the exiting nuclear power plants in Korea was performed first. A design of the control rod position indication system using reed switch for the CEDM on the system-integrated reactor SMART was developed based on the position indicator technology identified through the investigation. The feasibility of the design was evaluated by test of manufactured control rod position indicator using reed switch for SMART.

  • PDF

Stepping motor controlling apparatus

  • Le, Ngoc Quy;Jeon, Jae-Wook
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1858-1862
    • /
    • 2005
  • Stepping motor normally operates without feedback and may loss the synchronization. This problem can be prevented by using positional feedback. This paper introduces one method for closed loop control of stepping motor and a method for combining full-step control and micro-step control. This combination controlling apparatus can perform position control with high accuracy in a high speed, so that it will not suffer from vibration (or hunting) problem when stopping motor. Controlling apparatus contains a position counter block for detecting rotor position of stepping motor, a driving block for supplying current to windings of stepping motor, a control block for comparing output signal of position counter block with command position (desired position) and outputting current command signal based on deviation between current position and command position of rotor. To output current command signal, the control block refers to a sine wave data table. This table contains value of duty cycle of Pulse Width Modulation signal. As the second object of this paper, the process of building this data table is also presented.

  • PDF

A study on the real-time Position measurements of mobile object using neural network (신경 회로망을 이용한 이동물체의 실시간 위치측정에 대한 연구)

  • Ro, Jae-H.;Yi, Un-K.;Ro, Young-S.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.832-834
    • /
    • 1999
  • This paper is a study on the real-position measurements of mobile object using n network. 2-D PSD sensor is used to measure th position of moving object with light source. Position Sensitive Detector(PSD) is an useful which can be used to measure the position o incidence light in accuracy and in real-time. T the position of light source of moving target, neural network technique are proposed and applied. Real-time position measurements of the mobile robot with light source is examined to validate the proposed method. It is shown that the proposed technique provides accurate position estimation of the moving object.

  • PDF