• 제목/요약/키워드: Position Accuracy

Search Result 2,336, Processing Time 0.03 seconds

A Study on the Accuracy of the Loran-C Fix of Korean Chain in Korean Southeast Coast (한국 동남연안에서의 로란 C 한국체인의 측위정도에 관한 연구)

  • 신형일;정세모;김진건;박주삼
    • Journal of the Korean Institute of Navigation
    • /
    • v.20 no.3
    • /
    • pp.1-11
    • /
    • 1996
  • The accuracy for determining fishing ground and for setting fishing gear location, and the repeatability of ship position vary depending on fishing methods. Especially, Loran-C has been served to give fisherman highly accurate ship's position, and a number of fishing vessel are equipped with it's receivers. In this paper, in order to evaluate the accuracy of Loran-C fix of Korean chain in Korean southeast coast, the authors examined and analyzed the data of the receiver of Loran-C(LC 90, Furuno) and GPS(AccNav $Sport^{TM}$, Eagle) measured automatically and continuously for 2 seconds at interval of 5minutes during 2hours from $11^{th}$ to $21^{st}$, July, 1996 at six observed points, that is, Pusan, Wolnae, Pangojin, Chongja, Kampo and Kuryongpo in Korean southeast coast. As the result obtained, Loran-C signals showed little fluctuation with good reprodutibility. Good stability of Loran-C signals was indicated by the small value of the standard deviation 0.064~0.094$\mu\textrm{s}$. Although determination of the observed position could not be completely accurate, the extent of the error was estimated smaller than 0.35 nautical mile.

  • PDF

KOMPSAT-1 Satellite Orbit Control using GPS Data

  • Lee, Jin-Ho;Baek, Myuog-Jin;Koo, Ja-Chun;Yong, Ki-Lyuk;Chang, Young-Keun
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.1 no.2
    • /
    • pp.43-49
    • /
    • 2000
  • The Global Positioning System (GPS) is becoming more attractive navigation means for LEO (Low Earth Orbit) spacecraft due to the data accuracy and convenience for utilization. The anomalies such as serious variations of Dilution-Of-Precision (DOP), loss of infrequent 3-dimensional position fix, and deterioration of instantaneous accuracy of position and velocity data could be observed, which have not been appeared during the ground testing. It may cause lots of difficulty for the processing of the orbit control algorithm using the GPS data. In this paper, the characteristics of the GPS data were analyzed according to the configuration of GPS receiver such as position fix algorithm and mask angle using GPS navigation data obtained from the first Korea Multi-Purpose Satellite (KOMPSAT). The problem in orbit tracking using GPS data, including the infrequent deterioration of the accuracy, and an efficient algorithm for its countermeasures has also been introduced. The reliability and efficiency of the modified algorithm were verified by analyzing the effect of the results between algorithm simulation using KOMPSAT flight data and ground simulator.

  • PDF

A study on improvement of positioning accuracy using DGPS technique with low cost GPS modules (저가의 GPS 모듈에 DGPS 기술을 이용한 위치측정정확도 개선에 관한 연구)

  • 이창복;안준석;주세철;김기두
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.12 no.2
    • /
    • pp.155-161
    • /
    • 1994
  • Accurate positioning method using low cost GPS modules is proposed, which use the technique of differential GPS. DGPS experiments have been made using two coarse-acquisition (C/A) code GPS modules. Position accuracy of better than 5 m was obtained for position dilution of precision (PDOP) of 2-3 and that of better than 10 m after filtering was obtained for PDOP of about 9 in a local area. Static DGPS experiments were performed at Kookmin university with the DGPS correction data of KRISS reference station at Taejon. The distance between two stations is about 140 km. The results show that precision of the position is about 10 m (2 drms), which is ten times better than the results with the GPS module alone. Accuracy of about 10 meters can be obtained in near real time by the DGPS service with a reference station in our country.

  • PDF

A Localization Algorithm for Underwater Wireless Sensor Networks Based on Ranging Correction and Inertial Coordination

  • Guo, Ying;Kang, Xiaoyue;Han, Qinghe;Wang, Jingjing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.10
    • /
    • pp.4971-4987
    • /
    • 2019
  • Node localization is the basic task of underwater wireless sensor networks (UWSNs). Most of the existing underwater localization methods rely on ranging accuracy. Due to the special environment conditions in the ocean, beacon nodes are difficult to deploy accurately. The narrow bandwidth and high delay of the underwater acoustic communication channel lead to large errors. In order to reduce the ranging error and improve the positioning accuracy, we propose a localization algorithm based on ranging correction and inertial coordination. The algorithm can be divided into two parts, Range Correction based Localization algorithm (RCL) and Inertial Coordination based Localization algorithm (ICL). RCL uses the geometric relationship between the node positions to correct the ranging error and obtain the exact node position. However, when the unknown node deviates from the deployment area with the movement of the water flow, it cannot communicate with enough beacon nodes in a certain period of time. In this case, the node uses ICL algorithm to combine position data with motion information of neighbor nodes to update its position. The simulation results show that the proposed algorithm greatly improves the positioning accuracy of unknown nodes compared with the existing localization methods.

A study on method to improve the detection accuracy of the location at multi-sensor environment (다중 센서 환경에서 위치추정 정확도 향상 방안 연구)

  • Na, In-Seok;Kim, Yeong-Gil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.1
    • /
    • pp.248-254
    • /
    • 2013
  • In location finding system using spaced multi-sensor, there is the phenomenon that the position estimation accuracy is degraded by the location of signal sources and the sensors. This phenomenon is called GDOP(Geometric Dilution Of Precision) effect. and to minimize these effects, research is needed on how. In this paper, I will describe how to minimize GDOP effect, estimating possibility of GDOP using AOA(angle of arrival) information of spaced multi sensors, and removing sensor error factor in position estimation.

The Study on Design and Dynamic Operation Characteristics of Linear Pulse I for Embroidery Machine (자수기에 맞는 LPM의 설계와 구동 특성에 관한 연구)

  • Park, Chang-Soon;Kwon, Tae-Gun
    • Proceedings of the KIEE Conference
    • /
    • 2001.10a
    • /
    • pp.91-93
    • /
    • 2001
  • Linear pulse Motors(LPM) are widely used in fields where smooth linear motion is required, and their position accuracy is higher than other motors. Hybrid linear pulse motors(HLPM) are regarded as an excellent solution to positioning problems that require high accuracy, rapid acceleration and high-speed. The LPM has low mechanical complexity, high reliability, precise open-loop operation and low inertia etc. In many application areas such as factory automation speed positioning, computer peripherals and numerically controlled machine tools, LPM can be used. This motor drive system is especially suitable for machine tools the high position accuracy and repeatability. This paper describes about that need of the embroider machine, we want to design position-scanning device for the embroidery machine. At first, to be analysed characteristics of the machine and next designed the LPM, we used the field analysis program. The finite element method(FEM) program tool is employed for calculation the force. The reluctance models will be used the magnetic permeance of air gap by static-conditions. The forces between forcer and platen have been calculated using the virtual work method. And we used the simulink to know the dynamic characteristics of LPM.

  • PDF

Korean Learners′ Perception and Production of English Liquids (한국어 화자의 영어유음 지각 및 산출에 관한 연구)

  • Lee Borim;Lee Sook-hyang
    • MALSORI
    • /
    • no.52
    • /
    • pp.61-84
    • /
    • 2004
  • This study investigates the Korean native speakers' English liquid perception and production. Perception and production experiments were each conducted twice before and after a short period of explicit learning process of phonetic characteristics of English liquids. The results showed that correlation between perception and production varied depending on factors. In both perception and production, word-final position was the most difficult, and cluster position was the easiest. A considerable improvement was observed in word-initial and medial positions in production, whereas no improvement was achieved in word-final position, especially in production. This study is also concerned with the formant structures of Korean native speakers' production of English liquids in order to see what acoustic features are highly correlated with Korean native speakers' production accuracy of English liquids. The results showed that F2 did not show a high correlation while F3 was a strong correlate of the production accuracy.

  • PDF

Trajectory Data Generating Method for Higher Speed and Higher Accurate of Mechatronics Servo Systems (메카트로닉스 서보시스템의 고속 고정밀 운전을 위한 궤적 데이터 생성법)

  • Dae Won CHUNG
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.1
    • /
    • pp.50-54
    • /
    • 2004
  • Reference trajectory generation plays a key role in the computer control for accurate position control of machine. Generated trajectories must not only describe the desired tool path accurately, but must also have smooth kinetic profiles in order to maintain higher tracking accuracy, and to avoid exciting the natural modes of the mechanical servo control system. To achieve higher accurate position control, a method of limiting accelerating and decelerating speed data of reference trajectories is proposed to draw the path with an assigned accuracy without any complex operations.

GPS and DR Navigation System for Unmanned 9round Vehicle (무인지상차량을 위한 GPS와 DR을 이용한 항법시스템)

  • 박대선;박정훈;지규인
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.75-75
    • /
    • 2000
  • Recently, number of navigation system using GPS and other complementary sensors has been developed to offer high-position accuracy. In this paper, an integration of GPS and Dead-Reckoning, which consists of a fiber optical gyroscope and two high-precision wheel-motor encoders for a unmanned navigation system, is presented. The main objective of this integrated GPS/DR unmanned navigation system is to provide accurate position and heading navigation data continuously for autonomous mobile robot. We propose a method for increasing the accuracy of the estimated position of the mobile robot by its DR sensors, high-precision wheel-motor encoders and a fiber optical gyroscope. We used Kalman filter theory to combine GPS and DR measurements. The performance of GPS/DR navigation system is evaluated.

  • PDF

A Design of Adaptive Controller for Transportation System with Dynamic Friction

  • Lee, Jin-Woo;Seo, Jeon-Hyun;Han, Seung-Hoon;Lee, Kwon-Soon
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.199-204
    • /
    • 2006
  • In this paper, we propose an adaptive control algorithm to improve the position accuracy and reduce the nonlinear friction effects for linear motion servo system. Especially, the considered system includes not only the variation of the mass of the mover but also the friction change by the normal force. To adapt to these problems, we designed the controller with the mass estimator and the compensator by observing the variation of normal force. Finally, the numerical simulation results are presented in order to show the effectiveness of the proposed method to improve the position accuracy compared to other control methods.

  • PDF