• 제목/요약/키워드: Pose matching

검색결과 100건 처리시간 0.024초

체감형 콘텐츠 개발을 위한 연속동작 매칭 방법에 관한 연구 (A Study on the Gesture Matching Method for the Development of Gesture Contents)

  • 이형구
    • 한국게임학회 논문지
    • /
    • 제13권6호
    • /
    • pp.75-84
    • /
    • 2013
  • 본 연구에서는 윈도우즈 PC용 연속동작 감지 카메라, Xtion을 이용한 PC-윈도우 플랫폼 기반의 연속동작 녹화 및 매칭방법의 개발 내용을 소개한다. 해당 방법을 개발하기 위해 카메라를 통해 얻은 깊이 정보, RGB 화상 정보, 뼈대 정보를 가공하고 비교하는 API를 먼저 개발하였다. 유효관절만을 선택적으로 비교하는 pose 비교 방법이 개발되었으며, 연속동작 비교에서는 pose 사이에 다른 틀린 pose가 섞여도 인식할 수 있는 방법이 개발되었다. 특정 pose나 연속동작 검출을 위해 샘플 데이터를 기록하고 테스트할 수 있는 도구가 개발되었다. 6종류의 다른 pose 및 연속동작을 촬영하고 테스트한 결과, pose는 100%의 인식성공과 연속동작은 99%의 인식성공이 이루어져 개발된 방법의 유용성을 검증할 수 있었다.

Pose Tracking of Moving Sensor using Monocular Camera and IMU Sensor

  • Jung, Sukwoo;Park, Seho;Lee, KyungTaek
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권8호
    • /
    • pp.3011-3024
    • /
    • 2021
  • Pose estimation of the sensor is important issue in many applications such as robotics, navigation, tracking, and Augmented Reality. This paper proposes visual-inertial integration system appropriate for dynamically moving condition of the sensor. The orientation estimated from Inertial Measurement Unit (IMU) sensor is used to calculate the essential matrix based on the intrinsic parameters of the camera. Using the epipolar geometry, the outliers of the feature point matching are eliminated in the image sequences. The pose of the sensor can be obtained from the feature point matching. The use of IMU sensor can help initially eliminate erroneous point matches in the image of dynamic scene. After the outliers are removed from the feature points, these selected feature points matching relations are used to calculate the precise fundamental matrix. Finally, with the feature point matching relation, the pose of the sensor is estimated. The proposed procedure was implemented and tested, comparing with the existing methods. Experimental results have shown the effectiveness of the technique proposed in this paper.

관절의 회전각을 이용한 자세 매칭률 획득 방법 (A Method of Pose Matching Rate Acquisition Using The Angle of Rotation of Joint)

  • 현훈범;송수호;이현
    • 대한임베디드공학회논문지
    • /
    • 제11권3호
    • /
    • pp.183-191
    • /
    • 2016
  • Recently, in rehabilitation treatment, the situation that requires a measure of the accuracy of the pose and movement of joints is being increased due to the habits and lifestyle of modern people and the environment. In particular, there is a need for active automated system that can determine itself for the matching rate of pose Basically, a method for measuring the matching rate of pose is used by extracting an image using the Kinect or extracting a silhouette using the imaging device. However, in the case of extracting a silhouette, it is difficult to set the comparison, and in the case of using the Kinect sensor, there is a disadvantages that high accumulated error rate according to movement. Therefore, In this paper, we propose a method to reduce the accumulated error of matching rate of pose getting the rotation angle of joint by measuring the real-time amount of change of 9-axis sensor. In particular, it can be measured same conditions that unrelated of the physical condition and unaffected by the data for the back and forth movement, because of it compares the current rotation angle of the joint. Finally, we show a comparative advantage results by compared with traditional method of extracting a silhouette and a method using a Kinect sensor.

An Algorithm for a pose estimation of a robot using Scale-Invariant feature Transform

  • 이재광;허욱열;김학일
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.517-519
    • /
    • 2004
  • This paper describes an approach to estimate a robot pose with an image. The algorithm of pose estimation with an image can be broken down into three stages : extracting scale-invariant features, matching these features and calculating affine invariant. In the first step, the robot mounted mono camera captures environment image. Then feature extraction is executed in a captured image. These extracted features are recorded in a database. In the matching stage, a Random Sample Consensus(RANSAC) method is employed to match these features. After matching these features, the robot pose is estimated with positions of features by calculating affine invariant. This algorithm is implemented and demonstrated by Matlab program.

  • PDF

로봇 팔을 활용한 정리작업을 위한 물체 자세추정 및 이미지 매칭 (Pose Estimation and Image Matching for Tidy-up Task using a Robot Arm)

  • 박정란;조현준;송재복
    • 로봇학회논문지
    • /
    • 제16권4호
    • /
    • pp.299-305
    • /
    • 2021
  • In this study, the task of robotic tidy-up is to clean the current environment up exactly like a target image. To perform a tidy-up task using a robot, it is necessary to estimate the pose of various objects and to classify the objects. Pose estimation requires the CAD model of an object, but these models of most objects in daily life are not available. Therefore, this study proposes an algorithm that uses point cloud and PCA to estimate the pose of objects without the help of CAD models in cluttered environments. In addition, objects are usually detected using a deep learning-based object detection. However, this method has a limitation in that only the learned objects can be recognized, and it may take a long time to learn. This study proposes an image matching based on few-shot learning and Siamese network. It was shown from experiments that the proposed method can be effectively applied to the robotic tidy-up system, which showed a success rate of 85% in the tidy-up task.

뼈대-구조 능동형태모델을 이용한 사람의 자세 정합 (Human Pose Matching Using Skeleton-type Active Shape Models)

  • 장창혁
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제36권12호
    • /
    • pp.996-1008
    • /
    • 2009
  • 본 논문은 뼈대-구조(skeleton) 형태의 Active Shape Models을 이용한 사람의 자세 정합에 대한 새로운 접근 방법을 제안한다. 제안된 방법은 모델 생성과 정합 과정에서의 빠른 수행 시간을 위해 기존 윤곽 형태(silhouette)의 모델이 아닌 뼈대-구조 형태의 모델을 적용하였다. 기존 Active Shape Models을 뼈대-구조 형태로 사람 자세 정합에 적용했을 경우 자세를 결정짓는 팔과 다리의 부정확한 정합은 사람 몸의 다양한 색상 정보와 전후(fore-rear direction)만을 고려한 특징점(landmark)의 방향정보로 인해 발생되며, 이러한 문제점은 입력 영상의 차영상 정보와 사람의 자세를 결정짓는 팔과 다리의 중요 특징점에 방향정보를 추가하여 해결하였다. 사람의 뼈대-구조 모델을 생성하기 위해 600개의 이미지를 사용 하였으며, 생성된 형태 모델은 사람의 자세에 정합될 수 있는 17개의 특징점을 포함한다. 정합 과정에서 최대 30번 이하의 반복 과정을 수행 하며, 최대 수행 시간은 0.03초로 빠른 수행 시간의 결과를 얻었다.

ICP 계산속도 향상을 위한 빠른 Correspondence 매칭 방법 (A Fast Correspondence Matching for Iterative Closest Point Algorithm)

  • 신건희;최재희;김광기
    • 로봇학회논문지
    • /
    • 제17권3호
    • /
    • pp.373-380
    • /
    • 2022
  • This paper considers a method of fast correspondence matching for iterative closest point (ICP) algorithm. In robotics, the ICP algorithm and its variants have been widely used for pose estimation by finding the translation and rotation that best align two point clouds. In computational perspectives, the main difficulty is to find the correspondence point on the reference point cloud to each observed point. Jump-table-based correspondence matching is one of the methods for reducing computation time. This paper proposes a method that corrects errors in an existing jump-table-based correspondence matching algorithm. The criterion activating the use of jump-table is modified so that the correspondence matching can be applied to the situations, such as point-cloud registration problems with highly curved surfaces, for which the existing correspondence-matching method is non-applicable. For demonstration, both hardware and simulation experiments are performed. In a hardware experiment using Hokuyo-10LX LiDAR sensor, our new algorithm shows 100% correspondence matching accuracy and 88% decrease in computation time. Using the F1TENTH simulator, the proposed algorithm is tested for an autonomous driving scenario with 2D range-bearing point cloud data and also shows 100% correspondence matching accuracy.

실외 이동로봇의 고도지도 기반의 전역 위치추정을 위한 Hausdorff 거리 정합 기법 (Hausdorff Distance Matching for Elevation Map-based Global Localization of an Outdoor Mobile Robot)

  • 지용훈;송재복;백주현;유재관
    • 제어로봇시스템학회논문지
    • /
    • 제17권9호
    • /
    • pp.916-921
    • /
    • 2011
  • Mobile robot localization is the task of estimating the robot pose in a given environment. This research deals with outdoor localization based on an elevation map. Since outdoor environments are large and contain many complex objects, it is difficult to robustly estimate the robot pose. This paper proposes a Hausdorff distance-based map matching method. The Hausdorff distance is exploited to measure the similarity between extracted features obtained from the robot and elevation map. The experiments and simulations show that the proposed Hausdorff distance-based map matching is useful for robust outdoor localization using an elevation map. Also, it can be easily applied to other probabilistic approaches such as a Markov localization method.

2차원 영상에서 패턴매칭을 이용한 3차원 물체의 변환정보 추정 (The Estimation of the Transform Parameters Using the Pattern Matching with 2D Images)

  • 조택동;이호영;양상민
    • 한국정밀공학회지
    • /
    • 제21권7호
    • /
    • pp.83-91
    • /
    • 2004
  • The determination of camera position and orientation from known correspondences of 3D reference points and their images is known as pose estimation in computer vision or space resection in photogrammetry. This paper discusses estimation of transform parameters using the pattern matching method with 2D images only. In general, the 3D reference points or lines are needed to find out the 3D transform parameters, but this method is applied without the 3D reference points or lines. It uses only two images to find out the transform parameters between two image. The algorithm is simulated using Visual C++ on Windows 98.

인공신경망을 이용한 삼차원 물체의 인식과 정확한 자세계산 (3D Object Recognition and Accurate Pose Calculation Using a Neural Network)

  • 박강
    • 대한기계학회논문집A
    • /
    • 제23권11호
    • /
    • pp.1929-1939
    • /
    • 1999
  • This paper presents a neural network approach, which was named PRONET, to 3D object recognition and pose calculation. 3D objects are represented using a set of centroidal profile patterns that describe the boundary of the 2D views taken from evenly distributed view points. PRONET consists of the training stage and the execution stage. In the training stage, a three-layer feed-forward neural network is trained with the centroidal profile patterns using an error back-propagation method. In the execution stage, by matching a centroidal profile pattern of the given image with the best fitting centroidal profile pattern using the neural network, the identity and approximate orientation of the real object, such as a workpiece in arbitrary pose, are obtained. In the matching procedure, line-to-line correspondence between image features and 3D CAD features are also obtained. An iterative model posing method then calculates the more exact pose of the object based on initial orientation and correspondence.