• Title/Summary/Keyword: Pose invariance

Search Result 3, Processing Time 0.017 seconds

Development of Pose-Invariant Face Recognition System for Mobile Robot Applications

  • Lee, Tai-Gun;Park, Sung-Kee;Kim, Mun-Sang;Park, Mig-Non
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.783-788
    • /
    • 2003
  • In this paper, we present a new approach to detect and recognize human face in the image from vision camera equipped on the mobile robot platform. Due to the mobility of camera platform, obtained facial image is small and pose-various. For this condition, new algorithm should cope with these constraints and can detect and recognize face in nearly real time. In detection step, ‘coarse to fine’ detection strategy is used. Firstly, region boundary including face is roughly located by dual ellipse templates of facial color and on this region, the locations of three main facial features- two eyes and mouth-are estimated. For this, simplified facial feature maps using characteristic chrominance are made out and candidate pixels are segmented as eye or mouth pixels group. These candidate facial features are verified whether the length and orientation of feature pairs are suitable for face geometry. In recognition step, pseudo-convex hull area of gray face image is defined which area includes feature triangle connecting two eyes and mouth. And random lattice line set are composed and laid on this convex hull area, and then 2D appearance of this area is represented. From these procedures, facial information of detected face is obtained and face DB images are similarly processed for each person class. Based on facial information of these areas, distance measure of match of lattice lines is calculated and face image is recognized using this measure as a classifier. This proposed detection and recognition algorithms overcome the constraints of previous approach [15], make real-time face detection and recognition possible, and guarantee the correct recognition irregardless of some pose variation of face. The usefulness at mobile robot application is demonstrated.

  • PDF

Viewpoint Invariant Person Re-Identification for Global Multi-Object Tracking with Non-Overlapping Cameras

  • Gwak, Jeonghwan;Park, Geunpyo;Jeon, Moongu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.4
    • /
    • pp.2075-2092
    • /
    • 2017
  • Person re-identification is to match pedestrians observed from non-overlapping camera views. It has important applications in video surveillance such as person retrieval, person tracking, and activity analysis. However, it is a very challenging problem due to illumination, pose and viewpoint variations between non-overlapping camera views. In this work, we propose a viewpoint invariant method for matching pedestrian images using orientation of pedestrian. First, the proposed method divides a pedestrian image into patches and assigns angle to a patch using the orientation of the pedestrian under the assumption that a person body has the cylindrical shape. The difference between angles are then used to compute the similarity between patches. We applied the proposed method to real-time global multi-object tracking across multiple disjoint cameras with non-overlapping field of views. Re-identification algorithm makes global trajectories by connecting local trajectories obtained by different local trackers. The effectiveness of the viewpoint invariant method for person re-identification was validated on the VIPeR dataset. In addition, we demonstrated the effectiveness of the proposed approach for the inter-camera multiple object tracking on the MCT dataset with ground truth data for local tracking.

Evaluation of shape similarity for 3D models (3차원 모델을 위한 형상 유사성 평가)

  • Kim, Jeong-Sik;Choi, Soo-Mi
    • The KIPS Transactions:PartA
    • /
    • v.10A no.4
    • /
    • pp.357-368
    • /
    • 2003
  • Evaluation of shape similarity for 3D models is essential in many areas - medicine, mechanical engineering, molecular biology, etc. Moreover, as 3D models are commonly used on the Web, many researches have been made on the classification and retrieval of 3D models. In this paper, we describe methods for 3D shape representation and major concepts of similarity evaluation, and analyze the key features of recent researches for shape comparison after classifying them into four categories including multi-resolution, topology, 2D image, and statistics based methods. In addition, we evaluated the performance of the reviewed methods by the selected criteria such as uniqueness, robustness, invariance, multi-resolution, efficiency, and comparison scope. Multi-resolution based methods have resulted in decreased computation time for comparison and increased preprocessing time. The methods using geometric and topological information were able to compare more various types of models and were robust to partial shape comparison. 2D image based methods incurred overheads in time and space complexity. Statistics based methods allowed for shape comparison without pose-normalization and showed robustness against affine transformations and noise.