• 제목/요약/키워드: Pose Refinement

검색결과 8건 처리시간 0.023초

포즈 변화에 강인한 3차원 얼굴인식 (Pose Invariant 3D Face Recognition)

  • 송환종;양욱일;이용욱;손광훈
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2003년도 하계종합학술대회 논문집 Ⅳ
    • /
    • pp.2000-2003
    • /
    • 2003
  • This paper presents a three-dimensional (3D) head pose estimation algorithm for robust face recognition. Given a 3D input image, we automatically extract several important 3D facial feature points based on the facial geometry. To estimate 3D head pose accurately, we propose an Error Compensated-SVD (EC-SVD) algorithm. We estimate the initial 3D head pose of an input image using Singular Value Decomposition (SVD) method, and then perform a Pose refinement procedure in the normalized face space to compensate for the error for each axis. Experimental results show that the proposed method is capable of estimating pose accurately, therefore suitable for 3D face recognition.

  • PDF

3차원 자세 추정을 위한 딥러닝 기반 이상치 검출 및 보정 기법 (Deep Learning-Based Outlier Detection and Correction for 3D Pose Estimation)

  • 주찬양;박지성;이동호
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제11권10호
    • /
    • pp.419-426
    • /
    • 2022
  • 본 논문에서는 다양한 운동 모션에서 3차원 사람 자세 추정 모델의 정확도를 향상하는 방법을 제안한다. 기존의 사람 자세 추정 모델은 사람의 자세를 추정할 때 좌표 오차를 유발하는 흔들림, 반전, 교환, 오검출 등의 문제가 발생한다. 이러한 문제는 사람 자세 추정 모델의 정확한 자세 추정을 어렵게 한다. 이를 해결하기 위해 본 논문에서는 딥러닝 기반 이상치 검출 및 보정 방법을 제안한다. 딥러닝 기반의 이상치 검출 방법은 여러 모션에서 좌표의 이상치를 효과적으로 검출하고, 모션의 특징을 활용한 규칙 기반 보정 방법을 통해 이상치를 보정한다. 다양한 실험과 분석을 통하여 제안하는 방법이 골프 스윙 모션과 다양한 운동 모션에서도 사람의 자세를 정확히 추정할 수 있고, 3차원 좌표 데이터에서도 확장 가능함을 보인다.

3차원 얼굴 인식을 위한 오류 보상 특이치 분해 기반 얼굴 포즈 추정 (Head Pose Estimation Using Error Compensated Singular Value Decomposition for 3D Face Recognition)

  • 송환종;양욱일;손광훈
    • 대한전자공학회논문지SP
    • /
    • 제40권6호
    • /
    • pp.31-40
    • /
    • 2003
  • 대부분의 얼굴인식 시스템은 현재 2차원 영상을 기반으로 많은 분야에 응용되고 있다. 그러나 2차원 얼굴인식 시스템은 심하게 변화된 얼굴 포즈에 강인한 얼굴인식이 매우 어렵다. 이에 얼굴 포즈 추정은 정면 영상이 아닐 경우 인식률 향상을 위한 필수적인 과정이라 할 수 있다. 그러므로, 본 논문은 3차원 얼굴인식을 위한 새로운 얼굴 포즈 추정 방식을 제안한다 먼저 3차원 거리(range) 영상이 입력될 때 얼굴 곡선에 기반한 자동 얼굴 특징점 추출 기법을 적용한다. 추출된 특징점을 바탕으로 오류 보상 특이치 분해를 적용 한 새로운 3차원 얼굴 포즈 추정 방식을 제안한다. 특이치 분해를 이용하여 초기 회전각을 획득한 후 존재하는 오류를 보다 세밀하게 보상한다. 제안 알고리즘은 정규화된 3차원 얼굴 공간에서 추출된 특징점의 기하학적 위치를 이용하여 수행된다. 또한 3차원 얼굴인식을 위하여 3차원 최근접 이웃 분류기를 이용한 데이터베이스내에서 후보 얼굴을 선택하는 방식을 제안한다. 실험 결과를 통해 다양한 얼굴 포즈에 대하여 제안 알고리즘의 효율성과 타당성을 검증하였다.

확장 환경에서의 위치 및 방향 정보 계산을 위한 실시간 3차원 위치 계산 (Real-time 3D Calibration for Pose Computation in Extended Environments)

  • 박준;장준호;권장우
    • 한국멀티미디어학회논문지
    • /
    • 제6권3호
    • /
    • pp.455-461
    • /
    • 2003
  • 비전을 이용한 사용자의 위치 및 방향 측정 시스템은 대부분 마커를 부착하고 그 마커들의 위치를 측정한 후, 이 마커들의 3차원 위치 정보와 이미지 상에서의 2차원 위치를 기초로 카메라(또는 사용자)의 위치 및 방향을 계산한다. 여기서 사용되는 마커들은 대부분 알고리즘 상으로 컴퓨터가 찾기 쉽도록 고안하는 경우가 많다. 그러나 환경이 확장되는 경우에 있어서는 그에 상응하는 마커를 부착하는 것이 실제적으로 어려운 경우가 많다. 이와 같은 경우에, 효과적으로 검색이 가능하다면, 마커가 아닌 환경에 이미 존재하는 물체를 이용할 수 있다. 이러한 물체들을 위치 및 방향 계산에 사용하기 위해서는 이 물체들의 3차원 위치를 미리 계산해야 한다. 본 논문에서는 확장 환경에서 카메라(또는 사용자)의 위치 및 방향의 계산이나 수정에 사용되는 물체들의 3차원 위치를 계산하는 방법을 제안하고 설명한다.

  • PDF

엣지 디바이스와 카메라 센서 퓨전을 활용한 사람 자세 데이터 자동 수집 시스템 (An Automatic Data Collection System for Human Pose using Edge Devices and Camera-Based Sensor Fusion)

  • 김영근;김승현;김정곤;김원중
    • 한국전자통신학회논문지
    • /
    • 제19권1호
    • /
    • pp.189-196
    • /
    • 2024
  • 지능형 선별 관제 시스템의 잦은 오탐지로 인해 관제 요원들의 업무 능률 및 시장 신뢰도 저하 문제가 꾸준히 보고되고 있다. 오탐지 문제 개선을 위해 새 AI 모델을 개발하거나 교체하는 것은 기회비용이 크므로, 훈련 데이터 세트 품질을 향상하여 문제를 개선하는 것이 현실적이다. 그러나 소규모 조직은 데이터 세트 수집 및 정제 역량이 부족한 실정이다. 이에 본 논문에서는 사람 자세 추정 모델을 중심으로 엣지 디바이스와 카메라 센서 퓨전을 활용한 사람 자세 데이터 자동 수집 시스템을 제안한다. 이 시스템은 네트워크 말단에서 현장 데이터를 직접 수집하고 레이블링하는 과정을 실시간으로 처리하도록 만들어, 중앙으로 집중되는 연산 부하를 분산시킨다. 또한 현장 데이터를 직접 레이블링하므로 새로운 훈련 데이터 구축에 도움을 준다.

스윙 모션 사전 지식을 활용한 정확한 야구 선수 포즈 보정 (Motion Prior-Guided Refinement for Accurate Baseball Player Pose Estimation)

  • 오승현;김희원
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2024년도 춘계학술발표대회
    • /
    • pp.615-616
    • /
    • 2024
  • 현대 야구에서 타자의 스윙 패턴 분석은 상대 투수가 투구 전략을 수립하는데 상당히 중요하다. 이미지 기반의 인간 포즈 추정(HPE)은 대규모 스윙 패턴 분석을 자동화할 수 있다. 그러나 기존의 HPE 방법은 빠르고 가려진 신체 움직임으로 인해 복잡한 스윙 모션을 정확하게 추정하는 데 어려움이 있다. 이러한 문제를 극복하기 위해 스윙 모션에 대한 사전 정보를 활용하여 야구 선수의 포즈를 보정하는 방법(BPPC)을 제안한다. BPPC는 동작 인식, 오프셋 학습, 3D에서 2D 프로젝션 및 동작 인지 손실 함수를 통해 스윙 모션에 대한 사전 정보를 반영하여 기성 HPE 모델 결과를 보정한다. 실험에 따르면 BPPC는 벤치마크 데이터셋에서 기성 HPE 모델의 2D 키포인트 정확도를 정량적 및 정성적으로 향상시키고, 특히 신뢰도 점수가 낮고 부정확한 키포인트를 크게 보정했다.

3차원 장면 복원을 위한 강건한 실시간 시각 주행 거리 측정 (Robust Real-Time Visual Odometry Estimation for 3D Scene Reconstruction)

  • 김주희;김인철
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제4권4호
    • /
    • pp.187-194
    • /
    • 2015
  • 본 논문에서는 RGB-D 입력 영상들로부터 3차원 공간을 움직이는 카메라의 실시간 포즈를 효과적으로 추적할 수 있는 시각 주행 거리측정기를 제안한다. 본 논문에서 제안하는 시각 주행 거리 측정기에서는 컬러 영상과 깊이 영상의 풍부한 정보를 충분히 활용하면서도 실시간 계산량을 줄이기 위해, 특징 기반의 저밀도 주행 거리 계산 방법을 사용한다. 본 시스템에서는 보다 정확한 주행 거리 추정치를 얻기 위해, 카메라 이동 이전과 이동 이후의 영상에서 추출한 특징들을 정합한 뒤, 정합된 특징들에 대한 추가적인 정상 집합 정제 과정과 주행 거리 정제 작업을 반복한다. 또한, 정제 후 잔여 정상 집합의 크기가 충분치 않은 경우에도 잔여 정상 집합의 크기에 비례해 최종 주행 거리를 결정함으로써, 추적 성공률을 크게 향상시켰다. TUM 대학의 벤치마크 데이터 집합을 이용한 실험과 3차원 장면 복원 응용 시스템의 구현을 통해, 본 논문에서 제안하는 시각 주행 거리 측정 방법의 높은 성능을 확인할 수 있었다.

분위 회귀 분석을 이용한 비디오로부터의 3차원 인체 복원 (3D Human Reconstruction from Video using Quantile Regression)

  • 한지수;박인규
    • 방송공학회논문지
    • /
    • 제24권2호
    • /
    • pp.264-272
    • /
    • 2019
  • 본 논문은 비디오로부터 추출한 프레임으로부터 3차원 인체 형상과 자세 복원을 수행하고 이를 시간 축에서 자연스럽고 부드러운 움직임을 나타내도록 보정하는 기법을 제안한다. 제안하는 기법은 우선 비디오로부터 추출한 개별 프레임으로부터 convolutional neural network을 이용하여 관절의 위치와 인체의 윤곽을 추정한다. 인체의 형상 및 자세는 매개변수 기반의 3차원 변형가능 모델(morphable model)을 2차원 영상으로 투영후 정합하여 최적의 매개변수 값을 추정한다. 이 때 각 프레임에 대한 복원이 개별적으로 수행되면 시간 축에서 자세의 연속성과 체형의 일관성이 보장되지 못하고 올바르지 못한 복원 결과가 나타난다. 제안하는 기법은 이러한 문제점을 보완하기 위하여 각 프레임으로부터 복원된 3차원 변형가능 모델의 주성분 매개변수의 분석 및 보간을 수행한다. 실험결과 3차원 인체 복원에 오류가 발생한 프레임에 대해 이전과 이후 프레임들 사이의 관계를 통해 오류가 보정되어 개선된 복원 결과를 얻을 수 있음을 보인다.