• Title/Summary/Keyword: Pose Prediction

Search Result 51, Processing Time 0.027 seconds

Hard Example Generation by Novel View Synthesis for 3-D Pose Estimation (3차원 자세 추정 기법의 성능 향상을 위한 임의 시점 합성 기반의 고난도 예제 생성)

  • Minji Kim;Sungchan Kim
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.19 no.1
    • /
    • pp.9-17
    • /
    • 2024
  • It is widely recognized that for 3D human pose estimation (HPE), dataset acquisition is expensive and the effectiveness of augmentation techniques of conventional visual recognition tasks is limited. We address these difficulties by presenting a simple but effective method that augments input images in terms of viewpoints when training a 3D human pose estimation (HPE) model. Our intuition is that meaningful variants of the input images for HPE could be obtained by viewing a human instance in the images from an arbitrary viewpoint different from that in the original images. The core idea is to synthesize new images that have self-occlusion and thus are difficult to predict at different viewpoints even with the same pose of the original example. We incorporate this idea into the training procedure of the 3D HPE model as an augmentation stage of the input samples. We show that a strategy for augmenting the synthesized example should be carefully designed in terms of the frequency of performing the augmentation and the selection of viewpoints for synthesizing the samples. To this end, we propose a new metric to measure the prediction difficulty of input images for 3D HPE in terms of the distance between corresponding keypoints on both sides of a human body. Extensive exploration of the space of augmentation probability choices and example selection according to the proposed distance metric leads to a performance gain of up to 6.2% on Human3.6M, the well-known pose estimation dataset.

CNN3D-Based Bus Passenger Prediction Model Using Skeleton Keypoints (Skeleton Keypoints를 활용한 CNN3D 기반의 버스 승객 승하차 예측모델)

  • Jang, Jin;Kim, Soo Hyung
    • Smart Media Journal
    • /
    • v.11 no.3
    • /
    • pp.90-101
    • /
    • 2022
  • Buses are a popular means of transportation. As such, thorough preparation is needed for passenger safety management. However, the safety system is insufficient because there are accidents such as a death accident occurred when the bus departed without recognizing the elderly approaching to get on in 2018. There is a safety system that prevents pinching accidents through sensors on the back door stairs, but such a system does not prevent accidents that occur in the process of getting on and off like the above accident. If it is possible to predict the intention of bus passengers to get on and off, it will help to develop a safety system to prevent such accidents. However, studies predicting the intention of passengers to get on and off are insufficient. Therefore, in this paper, we propose a 1×1 CNN3D-based getting on and off intention prediction model using skeleton keypoints of passengers extracted from the camera image attached to the bus through UDP-Pose. The proposed model shows approximately 1~2% higher accuracy than the RNN and LSTM models in predicting passenger's getting on and off intentions.

Feasibility Prediction-Based Obstacle Removal Planning and Contactable Disinfection Robot System for Surface Disinfection in an Untidy Environment (비정돈 환경의 표면 소독을 위한 실현성 예측 기반의 장애물 제거 계획법 및 접촉식 방역 로봇 시스템)

  • Kang, Junsu;Yi, Inje;Chung, Wan Kyun;Kim, Keehoon
    • The Journal of Korea Robotics Society
    • /
    • v.16 no.3
    • /
    • pp.283-290
    • /
    • 2021
  • We propose a task and motion planning algorithm for clearing obstacles and wiping surfaces, which is essential for surface disinfection during the pathogen disinfection process. The proposed task and motion planning algorithm determines task parameters such as grasping pose and placement location during the planning process without using pre-specified or discretized values. Furthermore, to quickly inspect many unit motions, we propose a motion feasibility prediction algorithm consisting of collision checking and an SVM model for inverse mechanics and self-collision prediction. Planning time analysis shows that the feasibility prediction algorithm can significantly increase the planning speed and success rates in situations with multiple obstacles. Finally, we implemented a hierarchical control scheme to enable wiping motion while following a planner-generated joint trajectory. We verified our planning and control framework by conducted an obstacle-clearing and surface wiping experiment in a simulated disinfection environment.

Recent Development of Search Algorithm on Small Molecule Docking (소분자 도킹에서의 탐색알고리듬의 현황)

  • Chung, Hwan Won;Cho, Seung Joo
    • Journal of Integrative Natural Science
    • /
    • v.2 no.2
    • /
    • pp.55-58
    • /
    • 2009
  • A ligand-receptor docking program is an indispensible tool in modern pharmaceutical design. An accurate prediction of small molecular docking pose to a receptor is essential in drug design as well as molecular recognition. An effective docking program requires the ability to locate a correct binding pose in a surprisingly complex conformational space. However, there is an inherent difficulty to predict correct binding pose. The odds are more demanding than finding a needle in a haystack. This mainly comes from the flexibility of both ligand and receptor. Because the searching space to consider is so vast, receptor rigidity has been often applied in docking programs. Even nowadays the receptor may not be considered to be fully flexible although there have been some progress in search algorithm. Improving the efficiency of searching algorithm is still in great demand to explore other applications areas with inherently flexible ligand and/or receptor. In addition to classical search algorithms such as molecular dynamics, Monte Carlo, genetic algorithm and simulated annealing, rather recent algorithms such as tabu search, stochastic tunneling, particle swarm optimizations were also found to be effective. A good search algorithm would require a good balance between exploration and exploitation. It would be a good strategy to combine algorithms already developed. This composite algorithms can be more effective than an individual search algorithms.

  • PDF

Probabilistic Head Tracking Based on Cascaded Condensation Filtering (순차적 파티클 필터를 이용한 다중증거기반 얼굴추적)

  • Kim, Hyun-Woo;Kee, Seok-Cheol
    • The Journal of Korea Robotics Society
    • /
    • v.5 no.3
    • /
    • pp.262-269
    • /
    • 2010
  • This paper presents a probabilistic head tracking method, mainly applicable to face recognition and human robot interaction, which can robustly track human head against various variations such as pose/scale change, illumination change, and background clutters. Compared to conventional particle filter based approaches, the proposed method can effectively track a human head by regularizing the sample space and sequentially weighting multiple visual cues, in the prediction and observation stages, respectively. Experimental results show the robustness of the proposed method, and it is worthy to be mentioned that some proposed probabilistic framework could be easily applied to other object tracking problems.

Development and Application of Accident Prediction Model for Railroad At-Grade Crossings (철도건널목의 사고예측모형 개발에 관한 연구)

  • 조성훈;서선덕
    • Proceedings of the KSR Conference
    • /
    • 2001.10a
    • /
    • pp.429-434
    • /
    • 2001
  • Rail crossings pose special safety concerns for modern railroad operation with faster trains. More than ninety percent of train operation-related accidents occurs on at-grade crossings. Surest countermeasure for this safety hazard is to eliminate at-grade crossings by constructing over/under pass or by closing them. These eliminations usually require substantial amount of investment and/or heavy public protest from those affected by them. Thorough and objective analysis are usually required, and valid accident prediction models are essential to the process. This paper developed an accident prediction model for Korean at-grade crossings. The model utilized many important factors such as guide personnel, highway traffic, train frequency, train sight distance, and number of tracks. Developed model was validated with actual accident data.

  • PDF

Prediction of tunneling parameters for ultra-large diameter slurry shield TBM in cross-river tunnels based on integrated algorithms

  • Shujun Xu
    • Geomechanics and Engineering
    • /
    • v.38 no.1
    • /
    • pp.69-77
    • /
    • 2024
  • The development of shield-driven cross-river tunnels in China is witnessing a notable shift towards larger diameters, longer distances, and higher water pressures due to the more complex excavation environment. Complex geological formations, such as fault and karst cavities, pose significant construction risks. Real-time adjustment of shield tunneling parameters based on parameter prediction is the key to ensuring the safety and efficiency of shield tunneling. In this study, prediction models for the torque and thrust of the cutter plate of ultra-large diameter slurry shield TBMs is established based on integrated learning algorithms, by analyzing the real data of Heyan Road cross-river tunnel. The influence of geological complexities at the excavation face, substantial burial depth, and high water level on the slurry shield tunneling parameters are considered in the models. The results reveal that the predictive models established by applying Random Forest and AdaBoost algorithms exhibit strong agreement with actual data, which indicates that the good adaptability and predictive accuracy of these two models. The models proposed in this study can be applied in the real-time prediction and adaptive adjustment of the tunneling parameters for shield tunneling under complex geological conditions.

Keypoints-Based 2D Virtual Try-on Network System

  • Pham, Duy Lai;Ngyuen, Nhat Tan;Chung, Sun-Tae
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.2
    • /
    • pp.186-203
    • /
    • 2020
  • Image-based Virtual Try-On Systems are among the most potential solution for virtual fitting which tries on a target clothes into a model person image and thus have attracted considerable research efforts. In many cases, current solutions for those fails in achieving naturally looking virtual fitted image where a target clothes is transferred into the body area of a model person of any shape and pose while keeping clothes context like texture, text, logo without distortion and artifacts. In this paper, we propose a new improved image-based virtual try-on network system based on keypoints, which we name as KP-VTON. The proposed KP-VTON first detects keypoints in the target clothes and reliably predicts keypoints in the clothes of a model person image by utilizing a dense human pose estimation. Then, through TPS transformation calculated by utilizing the keypoints as control points, the warped target clothes image, which is matched into the body area for wearing the target clothes, is obtained. Finally, a new try-on module adopting Attention U-Net is applied to handle more detailed synthesis of virtual fitted image. Extensive experiments on a well-known dataset show that the proposed KP-VTON performs better the state-of-the-art virtual try-on systems.

Permeability Prediction of Rock Mass Using the Artifical Neural Networks (인공신경 망을 이용한 암반의 투수계수 예측)

  • Lee, In-Mo;Jo, Gye-Chun;Lee, Jeong-Hak
    • Geotechnical Engineering
    • /
    • v.13 no.2
    • /
    • pp.77-90
    • /
    • 1997
  • A resonable and economical method which can predict permeability of rock mass in underground is needed to overcome the uncertainty of groundwater behavior. For this par pose, one prediction method of permeability has been studied. The artificial neural networks model using error back propagation algorithm, . one of the teaching techniques, is utilized for this purpose. In order to verify the applicability of this model, in-situ permeability results are simulated. The simulation results show the potentiality of utilizing the neural networks for effective permeability prediction of rock mass.

  • PDF

Fiber element-based nonlinear analysis of concrete bridge piers with consideration of permanent displacement

  • Ansari, Mokhtar;Daneshjoo, Farhad;Safiey, Amir;Hamzehkolaei, Naser Safaeian;Sorkhou, Maryam
    • Structural Engineering and Mechanics
    • /
    • v.69 no.3
    • /
    • pp.243-255
    • /
    • 2019
  • Utilization of fiber beam-column element has gained considerable attention in recent years due mainly to its ability to model distributed plasticity over the length of the element through a number of integration points. However, the relatively high sensitivity of the method to modeling parameters as well as material behavior models can pose a significant challenge. Residual drift is one of the seismic demands which is highly sensitive to modeling parameters and material behavior models. Permanent deformations play a prominent role in the post-earthquake evaluation of serviceability of bridges affected by a near-fault ground shaking. In this research, the influence of distributed plasticity modeling parameters using both force-based and displacement-based fiber elements in the prediction of internal forces obtained from the nonlinear static analysis is studied. Having chosen suitable type and size of elements and number of integration points, the authors take the next step by investigating the influence of material behavioral model employed for the prediction of permanent deformations in the nonlinear dynamic analysis. The result shows that the choice of element type and size, number of integration points, modification of cyclic concrete behavior model and reloading strain of concrete significantly influence the fidelity of fiber element method for the prediction of permanent deformations.