• Title/Summary/Keyword: Pose Detection

Search Result 285, Processing Time 0.026 seconds

Current Progress of Next Generation Battery of Toxicology-Cellular and Molecular Toxicology

  • Ryu, Jae-Chun;Kim, Youn-Jung
    • Molecular & Cellular Toxicology
    • /
    • v.1 no.1
    • /
    • pp.26-31
    • /
    • 2005
  • The detection and the regulation of man-made synthetic chemicals and the establishment of toxicity that may pose a genetic hazard in our environment are subjects of great concern because of its close correlation between environmental contamination and human health. Since the tens of thousands of man-made chemicals that have been introduced into the environment in the last few decades must also be tested for their damaging effect on DNA, the agents that cause this damage must be identified.

Multi-views face detection in Omni-directional camera for non-intrusive iris recognition (비강압적 홍채 인식을 위한 전 방향 카메라에서의 다각도 얼굴 검출)

  • 이현수;배광혁;김재희;박강령
    • Proceedings of the IEEK Conference
    • /
    • 2003.11b
    • /
    • pp.115-118
    • /
    • 2003
  • This paper describes a system of detecting multi-views faces and estimating their face poses in an omni-directional camera environment for non-intrusive iris recognition. The paper is divided into two parts; First, moving region is identified by using difference-image information. Then this region is analyzed with face-color information to find the face candidate region. Second part is applying PCA (Principal Component Analysis) to detect multi-view faces, to estimate face pose.

  • PDF

Lightening of Human Pose Estimation Algorithm Using MobileViT and Transfer Learning

  • Kunwoo Kim;Jonghyun Hong;Jonghyuk Park
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.9
    • /
    • pp.17-25
    • /
    • 2023
  • In this paper, we propose a model that can perform human pose estimation through a MobileViT-based model with fewer parameters and faster estimation. The based model demonstrates lightweight performance through a structure that combines features of convolutional neural networks with features of Vision Transformer. Transformer, which is a major mechanism in this study, has become more influential as its based models perform better than convolutional neural network-based models in the field of computer vision. Similarly, in the field of human pose estimation, Vision Transformer-based ViTPose maintains the best performance in all human pose estimation benchmarks such as COCO, OCHuman, and MPII. However, because Vision Transformer has a heavy model structure with a large number of parameters and requires a relatively large amount of computation, it costs users a lot to train the model. Accordingly, the based model overcame the insufficient Inductive Bias calculation problem, which requires a large amount of computation by Vision Transformer, with Local Representation through a convolutional neural network structure. Finally, the proposed model obtained a mean average precision of 0.694 on the MS COCO benchmark with 3.28 GFLOPs and 9.72 million parameters, which are 1/5 and 1/9 the number compared to ViTPose, respectively.

Three-dimensional Head Tracking Using Adaptive Local Binary Pattern in Depth Images

  • Kim, Joongrock;Yoon, Changyong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.16 no.2
    • /
    • pp.131-139
    • /
    • 2016
  • Recognition of human motions has become a main area of computer vision due to its potential human-computer interface (HCI) and surveillance. Among those existing recognition techniques for human motions, head detection and tracking is basis for all human motion recognitions. Various approaches have been tried to detect and trace the position of human head in two-dimensional (2D) images precisely. However, it is still a challenging problem because the human appearance is too changeable by pose, and images are affected by illumination change. To enhance the performance of head detection and tracking, the real-time three-dimensional (3D) data acquisition sensors such as time-of-flight and Kinect depth sensor are recently used. In this paper, we propose an effective feature extraction method, called adaptive local binary pattern (ALBP), for depth image based applications. Contrasting to well-known conventional local binary pattern (LBP), the proposed ALBP cannot only extract shape information without texture in depth images, but also is invariant distance change in range images. We apply the proposed ALBP for head detection and tracking in depth images to show its effectiveness and its usefulness.

Structural health monitoring through meta-heuristics - comparative performance study

  • Pholdee, Nantiwat;Bureerat, Sujin
    • Advances in Computational Design
    • /
    • v.1 no.4
    • /
    • pp.315-327
    • /
    • 2016
  • Damage detection and localisation in structures is essential since it can be a means for preventive maintenance of those structures under service conditions. The use of structural modal data for detecting the damage is one of the most efficient methods. This paper presents comparative performance of various state-of-the-art meta-heuristics for use in structural damage detection based on changes in modal data. The metaheuristics include differential evolution (DE), artificial bee colony algorithm (ABC), real-code ant colony optimisation (ACOR), charged system search (ChSS), league championship algorithm (LCA), simulated annealing (SA), particle swarm optimisation (PSO), evolution strategies (ES), teaching-learning-based optimisation (TLBO), adaptive differential evolution (JADE), evolution strategy with covariance matrix adaptation (CMAES), success-history based adaptive differential evolution (SHADE) and SHADE with linear population size reduction (L-SHADE). Three truss structures are used to pose several test problems for structural damage detection. The meta-heuristics are then used to solve the test problems treated as optimisation problems. Comparative performance is carried out where the statistically best algorithms are identified.

B-snake Based Lane Detection with Feature Merging and Extrinsic Camera Parameter Estimation (특징점 병합과 카메라 외부 파라미터 추정 결과를 고려한 B-snake기반 차선 검출)

  • Ha, Sangheon;Kim, Gyeonghwan
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.1
    • /
    • pp.215-224
    • /
    • 2013
  • This paper proposes a robust lane detection algorithm for bumpy or slope changing roads by estimating extrinsic camera parameters, which represent the pose of the camera mounted on the car. The proposed algorithm assumes that two lanes are parallel with the predefined width. The lane detection and the extrinsic camera parameter estimation are performed simultaneously by utilizing B-snake in motion compensated and merged feature map with consecutive sequences. The experimental results show the robustness of the proposed algorithm in various road environments. Furthermore, the accuracy of extrinsic camera parameter estimation is evaluated by calculating the distance to a preceding car with the estimated parameters and comparing to the radar-measured distance.

A Comprehensive Analyses of Intrusion Detection System for IoT Environment

  • Sicato, Jose Costa Sapalo;Singh, Sushil Kumar;Rathore, Shailendra;Park, Jong Hyuk
    • Journal of Information Processing Systems
    • /
    • v.16 no.4
    • /
    • pp.975-990
    • /
    • 2020
  • Nowadays, the Internet of Things (IoT) network, is increasingly becoming a ubiquitous connectivity between different advanced applications such as smart cities, smart homes, smart grids, and many others. The emerging network of smart devices and objects enables people to make smart decisions through machine to machine (M2M) communication. Most real-world security and IoT-related challenges are vulnerable to various attacks that pose numerous security and privacy challenges. Therefore, IoT offers efficient and effective solutions. intrusion detection system (IDS) is a solution to address security and privacy challenges with detecting different IoT attacks. To develop an attack detection and a stable network, this paper's main objective is to provide a comprehensive overview of existing intrusion detections system for IoT environment, cyber-security threats challenges, and transparent problems and concerns are analyzed and discussed. In this paper, we propose software-defined IDS based distributed cloud architecture, that provides a secure IoT environment. Experimental evaluation of proposed architecture shows that it has better detection and accuracy than traditional methods.

Phishing Attack Detection Using Deep Learning

  • Alzahrani, Sabah M.
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.12
    • /
    • pp.213-218
    • /
    • 2021
  • This paper proposes a technique for detecting a significant threat that attempts to get sensitive and confidential information such as usernames, passwords, credit card information, and more to target an individual or organization. By definition, a phishing attack happens when malicious people pose as trusted entities to fraudulently obtain user data. Phishing is classified as a type of social engineering attack. For a phishing attack to happen, a victim must be convinced to open an email or a direct message [1]. The email or direct message will contain a link that the victim will be required to click on. The aim of the attack is usually to install malicious software or to freeze a system. In other instances, the attackers will threaten to reveal sensitive information obtained from the victim. Phishing attacks can have devastating effects on the victim. Sensitive and confidential information can find its way into the hands of malicious people. Another devastating effect of phishing attacks is identity theft [1]. Attackers may impersonate the victim to make unauthorized purchases. Victims also complain of loss of funds when attackers access their credit card information. The proposed method has two major subsystems: (1) Data collection: different websites have been collected as a big data corresponding to normal and phishing dataset, and (2) distributed detection system: different artificial algorithms are used: a neural network algorithm and machine learning. The Amazon cloud was used for running the cluster with different cores of machines. The experiment results of the proposed system achieved very good accuracy and detection rate as well.

An Integrated Face Detection and Recognition System (통합된 시스템에서의 얼굴검출과 인식기법)

  • 박동희;이규봉;이유홍;나상동;배철수
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.05a
    • /
    • pp.165-170
    • /
    • 2003
  • This paper presents an integrated approach to unconstrained face recognition in arbitrary scenes. The front end of the system comprises of a scale and pose tolerant face detector. Scale normalization is achieved through novel combination of a skin color segmentation and log-polar mapping procedure. Principal component analysis is used with the multi-view approach proposed in[10] to handle the pose variations. For a given color input image, the detector encloses a face in a complex scene within a circular boundary and indicates the position of the nose. Next, for recognition, a radial grid mapping centered on the nose yields a feature vector within the circular boundary. As the width of the color segmented region provides an estimated size for the face, the extracted feature vector is scale normalized by the estimated size. The feature vector is input to a trained neural network classifier for face identification. The system was evaluated using a database of 20 person's faces with varying scale and pose obtained on different complex backgrounds. The performance of the face recognizer was also quite good except for sensitivity to small scale face images. The integrated system achieved average recognition rates of 87% to 92%.

  • PDF

An Integrated Face Detection and Recognition System (통합된 시스템에서의 얼굴검출과 인식기법)

  • 박동희;배철수
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.6
    • /
    • pp.1312-1317
    • /
    • 2003
  • This paper presents an integrated approach to unconstrained face recognition in arbitrary scenes. The front end of the system comprises of a scale and pose tolerant face detector. Scale normalization is achieved through novel combination of a skin color segmentation and log-polar mapping procedure. Principal component analysis is used with the multi-view approach proposed in[10] to handle the pose variations. For a given color input image, the detector encloses a face in a complex scene within a circular boundary and indicates the position of the nose. Next, for recognition, a radial grid mapping centered on the nose yields a feature vector within the circular boundary. As the width of the color segmented region provides an estimated size for the face, the extracted feature vector is scale normalized by the estimated size. The feature vector is input to a trained neural network classifier for face identification. The system was evaluated using a database of 20 person's faces with varying scale and pose obtained on different complex backgrounds. The performance of the face recognizer was also quite good except for sensitivity to small scale face images. The integrated system achieved average recognition rates of 87% to 92%.