• Title/Summary/Keyword: Pose Classification

Search Result 80, Processing Time 0.024 seconds

Pose Classification and Correction System for At-home Workouts (홈 트레이닝을 위한 운동 동작 분류 및 교정 시스템)

  • Kang, Jae Min;Park, Seongsu;Kim, Yun Soo;Gahm, Jin Kyu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.9
    • /
    • pp.1183-1189
    • /
    • 2021
  • There have been recently an increasing number of people working out at home. However, many of them do not have face-to-face guidance from experts, so they cannot effectively correct their wrong pose. This may lead to strain and injury to those doing home training. To tackle this problem, this paper proposes a video data-based pose classification and correction system for home training. The proposed system classifies poses using the multi-layer perceptron and pose estimation model, and corrects poses based on joint angels estimated. A voting algorithm that considers the results of successive frames is applied to improve the performance of the pose classification model. Multi-layer perceptron model for post classification shows the highest accuracy with 0.9. In addition, it is shown that the proposed voting algorithm improves the accuracy to 0.93.

Design of Robust Face Recognition System to Pose Variations Based on Pose Estimation : The Comparative Study on the Recognition Performance Using PCA and RBFNNs (포즈 추정 기반 포즈변화에 강인한 얼굴인식 시스템 설계 : PCA와 RBFNNs 패턴분류기를 이용한 인식성능 비교연구)

  • Ko, Jun-Hyun;Kim, Jin-Yul;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.9
    • /
    • pp.1347-1355
    • /
    • 2015
  • In this study, we compare the recognition performance using PCA and RBFNNs for introducing robust face recognition system to pose variations based on pose estimation. proposed face recognition system uses Honda/UCSD database for comparing recognition performance. Honda/UCSD database consists of 20 people, with 5 poses per person for a total of 500 face images. Extracted image consists of 5 poses using Multiple-Space PCA and each pose is performed by using (2D)2PCA for performing pose classification. Linear polynomial function is used as connection weight of RBFNNs Pattern Classifier and parameter coefficient is set by using Particle Swarm Optimization for model optimization. Proposed (2D)2PCA-based face pose classification performs recognition performance with PCA, (2D)2PCA and RBFNNs.

An Improved Approach for 3D Hand Pose Estimation Based on a Single Depth Image and Haar Random Forest

  • Kim, Wonggi;Chun, Junchul
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.8
    • /
    • pp.3136-3150
    • /
    • 2015
  • A vision-based 3D tracking of articulated human hand is one of the major issues in the applications of human computer interactions and understanding the control of robot hand. This paper presents an improved approach for tracking and recovering the 3D position and orientation of a human hand using the Kinect sensor. The basic idea of the proposed method is to solve an optimization problem that minimizes the discrepancy in 3D shape between an actual hand observed by Kinect and a hypothesized 3D hand model. Since each of the 3D hand pose has 23 degrees of freedom, the hand articulation tracking needs computational excessive burden in minimizing the 3D shape discrepancy between an observed hand and a 3D hand model. For this, we first created a 3D hand model which represents the hand with 17 different parts. Secondly, Random Forest classifier was trained on the synthetic depth images generated by animating the developed 3D hand model, which was then used for Haar-like feature-based classification rather than performing per-pixel classification. Classification results were used for estimating the joint positions for the hand skeleton. Through the experiment, we were able to prove that the proposed method showed improvement rates in hand part recognition and a performance of 20-30 fps. The results confirmed its practical use in classifying hand area and successfully tracked and recovered the 3D hand pose in a real time fashion.

Performance Comparison for Exercise Motion classification using Deep Learing-based OpenPose (OpenPose기반 딥러닝을 이용한 운동동작분류 성능 비교)

  • Nam Rye Son;Min A Jung
    • Smart Media Journal
    • /
    • v.12 no.7
    • /
    • pp.59-67
    • /
    • 2023
  • Recently, research on behavior analysis tracking human posture and movement has been actively conducted. In particular, OpenPose, an open-source software developed by CMU in 2017, is a representative method for estimating human appearance and behavior. OpenPose can detect and estimate various body parts of a person, such as height, face, and hands in real-time, making it applicable to various fields such as smart healthcare, exercise training, security systems, and medical fields. In this paper, we propose a method for classifying four exercise movements - Squat, Walk, Wave, and Fall-down - which are most commonly performed by users in the gym, using OpenPose-based deep learning models, DNN and CNN. The training data is collected by capturing the user's movements through recorded videos and real-time camera captures. The collected dataset undergoes preprocessing using OpenPose. The preprocessed dataset is then used to train the proposed DNN and CNN models for exercise movement classification. The performance errors of the proposed models are evaluated using MSE, RMSE, and MAE. The performance evaluation results showed that the proposed DNN model outperformed the proposed CNN model.

A Kidnapping Detection Using Human Pose Estimation in Intelligent Video Surveillance Systems

  • Park, Ju Hyun;Song, KwangHo;Kim, Yoo-Sung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.8
    • /
    • pp.9-16
    • /
    • 2018
  • In this paper, a kidnapping detection scheme in which human pose estimation is used to classify accurately between kidnapping cases and normal ones is proposed. To estimate human poses from input video, human's 10 joint information is extracted by OpenPose library. In addition to the features which are used in the previous study to represent the size change rates and the regularities of human activities, the human pose estimation features which are computed from the location of detected human's joints are used as the features to distinguish kidnapping situations from the normal accompanying ones. A frame-based kidnapping detection scheme is generated according to the selection of J48 decision tree model from the comparison of several representative classification models. When a video has more frames of kidnapping situation than the threshold ratio after two people meet in the video, the proposed scheme detects and notifies the occurrence of kidnapping event. To check the feasibility of the proposed scheme, the detection accuracy of our newly proposed scheme is compared with that of the previous scheme. According to the experiment results, the proposed scheme could detect kidnapping situations more 4.73% correctly than the previous scheme.

Fast Random-Forest-Based Human Pose Estimation Using a Multi-scale and Cascade Approach

  • Chang, Ju Yong;Nam, Seung Woo
    • ETRI Journal
    • /
    • v.35 no.6
    • /
    • pp.949-959
    • /
    • 2013
  • Since the recent launch of Microsoft Xbox Kinect, research on 3D human pose estimation has attracted a lot of attention in the computer vision community. Kinect shows impressive estimation accuracy and real-time performance on massive graphics processing unit hardware. In this paper, we focus on further reducing the computation complexity of the existing state-of-the-art method to make the real-time 3D human pose estimation functionality applicable to devices with lower computing power. As a result, we propose two simple approaches to speed up the random-forest-based human pose estimation method. In the original algorithm, the random forest classifier is applied to all pixels of the segmented human depth image. We first use a multi-scale approach to reduce the number of such calculations. Second, the complexity of the random forest classification itself is decreased by the proposed cascade approach. Experiment results for real data show that our method is effective and works in real time (30 fps) without any parallelization efforts.

A Vehicle Classification Method in Thermal Video Sequences using both Shape and Local Features (형태특징과 지역특징 융합기법을 활용한 열영상 기반의 차량 분류 방법)

  • Yang, Dong Won
    • Journal of IKEEE
    • /
    • v.24 no.1
    • /
    • pp.97-105
    • /
    • 2020
  • A thermal imaging sensor receives the radiating energy from the target and the background, so it has been widely used for detection, tracking, and classification of targets at night for military purpose. In recognizing the target automatically using thermal images, if the correct edges of object are used then it can generate the classification results with high accuracy. However since the thermal images have lower spatial resolution and more blurred edges than color images, the accuracy of the classification using thermal images can be decreased. In this paper, to overcome this problem, a new hierarchical classifier using both shape and local features based on the segmentation reliabilities, and the class/pose updating method for vehicle classification are proposed. The proposed classification method was validated using thermal video sequences of more than 20,000 images which include four types of military vehicles - main battle tank, armored personnel carrier, military truck, and estate car. The experiment results showed that the proposed method outperformed the state-of-the-arts methods in classification accuracy.

Skeleton Model-Based Unsafe Behaviors Detection at a Construction Site Scaffold

  • Nguyen, Truong Linh;Tran, Si Van-Tien;Bao, Quy Lan;Lee, Doyeob;Oh, Myoungho;Park, Chansik
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.361-369
    • /
    • 2022
  • Unsafe actions and behaviors of workers cause most accidents at construction sites. Nowadays, occupational safety is a top priority at construction sites. However, this problem often requires money and effort from investors or construction owners. Therefore, decreasing the accidents rates of workers and saving monitoring costs for contractors is necessary at construction sites. This study proposes an unsafe behavior detection method based on a skeleton model to classify three common unsafe behaviors on the scaffold: climbing, jumping, and running. First, the OpenPose method is used to obtain the workers' key points. Second, all skeleton datasets are aggregated from the temporary size. Third, the key point dataset becomes the input of the action classification model. The method is effective, with an accuracy rate of 89.6% precision and 90.5% recall of unsafe actions correctly detected in the experiment.

  • PDF

A study on Face Image Classification for Efficient Face Detection Using FLD

  • Nam, Mi-Young;Kim, Kwang-Baek
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2004.05a
    • /
    • pp.106-109
    • /
    • 2004
  • Many reported methods assume that the faces in an image or an image sequence have been identified and localization. Face detection from image is a challenging task because of variability in scale, location, orientation and pose. In this paper, we present an efficient linear discriminant for multi-view face detection. Our approaches are based on linear discriminant. We define training data with fisher linear discriminant to efficient learning method. Face detection is considerably difficult because it will be influenced by poses of human face and changes in illumination. This idea can solve the multi-view and scale face detection problem poses. Quickly and efficiently, which fits for detecting face automatically. In this paper, we extract face using fisher linear discriminant that is hierarchical models invariant pose and background. We estimation the pose in detected face and eye detect. The purpose of this paper is to classify face and non-face and efficient fisher linear discriminant..

  • PDF

Pose Estimation Techniques for Humanoid Characters in FPS Gaming Environments (인간 캐릭터 포즈 식별: FPS 게임에서의 포즈 추정 기법)

  • Youjung Han;Minseop Lee;Minsu Cha;Jiyoung Woo
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2024.01a
    • /
    • pp.29-30
    • /
    • 2024
  • 본 논문은 Krafton의 PUBG: BATTLEGROUNDS 게임에서 플레이어 분류를 목표로 하며, 포즈 추정기술을 사용하여 일반 플레이어와 봇을 구분한다. 이는 게임에서 직접 수집한 비디오 데이터를 기반으로 하며, 다음과 같은 두 가지 접근 방식을 제안한다. 첫 번째 방법은 동작 시퀀스 분석을 통해, 사용자의 특정동작 패턴을 식별하고 로지스틱 회귀 모델을 활용해 사용자 유형을 분류한다. 두 번째 방법은 YOLO-pose 모델을 사용하여 비디오 데이터에서 키포인트를 추출하고, 이를 LSTM 모델에 적용하여 프레임별로 사용자의 유형을 분류한다. 이러한 이중 접근 방식은 게임의 공정성과 사용자 경험을 향상시키는 새로운 도구를 제공하며, 보다 안전한 게임 환경에 기여할 수 있다. 이 연구는 게임 산업뿐만 아니라 보안 및 모니터링 분야에서도 동작 분석에 대한 혁신적인 접근 방식으로 활용될 잠재력을 가지고 있다.

  • PDF