• 제목/요약/키워드: Pose Angle Estimation

검색결과 26건 처리시간 0.028초

인공 부착 마커를 활용한 실내 위치 및 자세 추정 알고리즘 (Indoor Location and Pose Estimation Algorithm using Artificial Attached Marker)

  • 안병민;고윤호;이지홍
    • 한국멀티미디어학회논문지
    • /
    • 제19권2호
    • /
    • pp.240-251
    • /
    • 2016
  • This paper presents a real-time indoor location and pose estimation method that utilizes simple artificial markers and image analysis techniques for the purpose of warehouse automation. The conventional indoor localization methods cannot work robustly in warehouses where severe environmental changes usually occur due to the movement of stocked goods. To overcome this problem, the proposed framework places artificial markers having different interior pattern on the predefined position of the warehouse floor. The proposed algorithm obtains marker candidate regions from a captured image by a simple binarization and labeling procedure. Then it extracts maker interior pattern information from each candidate region in order to decide whether the candidate region is a true marker or not. The extracted interior pattern information and the outer boundary of the marker are used to estimate location and heading angle of the localization system. Experimental results show that the proposed localization method can provide high performance which is almost equivalent to that of the conventional method using an expensive LIDAR sensor and AMCL algorithm.

3차원 얼굴 인식을 위한 오류 보상 특이치 분해 기반 얼굴 포즈 추정 (Head Pose Estimation Using Error Compensated Singular Value Decomposition for 3D Face Recognition)

  • 송환종;양욱일;손광훈
    • 대한전자공학회논문지SP
    • /
    • 제40권6호
    • /
    • pp.31-40
    • /
    • 2003
  • 대부분의 얼굴인식 시스템은 현재 2차원 영상을 기반으로 많은 분야에 응용되고 있다. 그러나 2차원 얼굴인식 시스템은 심하게 변화된 얼굴 포즈에 강인한 얼굴인식이 매우 어렵다. 이에 얼굴 포즈 추정은 정면 영상이 아닐 경우 인식률 향상을 위한 필수적인 과정이라 할 수 있다. 그러므로, 본 논문은 3차원 얼굴인식을 위한 새로운 얼굴 포즈 추정 방식을 제안한다 먼저 3차원 거리(range) 영상이 입력될 때 얼굴 곡선에 기반한 자동 얼굴 특징점 추출 기법을 적용한다. 추출된 특징점을 바탕으로 오류 보상 특이치 분해를 적용 한 새로운 3차원 얼굴 포즈 추정 방식을 제안한다. 특이치 분해를 이용하여 초기 회전각을 획득한 후 존재하는 오류를 보다 세밀하게 보상한다. 제안 알고리즘은 정규화된 3차원 얼굴 공간에서 추출된 특징점의 기하학적 위치를 이용하여 수행된다. 또한 3차원 얼굴인식을 위하여 3차원 최근접 이웃 분류기를 이용한 데이터베이스내에서 후보 얼굴을 선택하는 방식을 제안한다. 실험 결과를 통해 다양한 얼굴 포즈에 대하여 제안 알고리즘의 효율성과 타당성을 검증하였다.

Robust pupil detection and gaze tracking under occlusion of eyes

  • Lee, Gyung-Ju;Kim, Jin-Suh;Kim, Gye-Young
    • 한국컴퓨터정보학회논문지
    • /
    • 제21권10호
    • /
    • pp.11-19
    • /
    • 2016
  • The size of a display is large, The form becoming various of that do not apply to previous methods of gaze tracking and if setup gaze-track-camera above display, can solve the problem of size or height of display. However, This method can not use of infrared illumination information of reflected cornea using previous methods. In this paper, Robust pupil detecting method for eye's occlusion, corner point of inner eye and center of pupil, and using the face pose information proposes a method for calculating the simply position of the gaze. In the proposed method, capture the frame for gaze tracking that according to position of person transform camera mode of wide or narrow angle. If detect the face exist in field of view(FOV) in wide mode of camera, transform narrow mode of camera calculating position of face. The frame captured in narrow mode of camera include gaze direction information of person in long distance. The method for calculating the gaze direction consist of face pose estimation and gaze direction calculating step. Face pose estimation is estimated by mapping between feature point of detected face and 3D model. To calculate gaze direction the first, perform ellipse detect using splitting from iris edge information of pupil and if occlusion of pupil, estimate position of pupil with deformable template. Then using center of pupil and corner point of inner eye, face pose information calculate gaze position at display. In the experiment, proposed gaze tracking algorithm in this paper solve the constraints that form of a display, to calculate effectively gaze direction of person in the long distance using single camera, demonstrate in experiments by distance.

Robot Posture Estimation Using Inner-Pipe Image

  • Sup, Yoon-Ji;Sok, Kang-E
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.173.1-173
    • /
    • 2001
  • This paper proposes the methodology in image processing algorithm that estimates the pose of the pipe crawling robot. The pipe crawling robots are usually equipped with a lighting device and a camera on its head for monitoring and inspection purpose. The proposed methodology is using these devices without introducing the extra sensors and is based on the fact that the position and the intensity of the reflected light varies with the robot posture. The algorithm is divided into two parts, estimating the translation and rotation angle of the camera, followed by the actual pose estimation of the robot. To investigate the performance of the algorithm, the algorithm is applied to a sewage maintenance robot.

  • PDF

방향성 2차원 타원형 필터를 이용한 스테레오 기반 포즈에 강인한 사람 검출 (Stereo-based Robust Human Detection on Pose Variation Using Multiple Oriented 2D Elliptical Filters)

  • 조상호;김태완;김대진
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제35권10호
    • /
    • pp.600-607
    • /
    • 2008
  • 이 논문은 방향성 2차원 타원형 필터(Multiple Oriented 2D Elliptical Filters;MO2DEFs)를 사용하여 스테레오 영상으로부터 포즈에 강인한 사람 검출을 제안한다. 기존의 물체 지향 크기 적응 필터(Object Oriented Scale Adaptive Filter;OOSAF)는 정면을 보고 있는 사람만을 검출하는 단점을 지니고 있는데 반해 제안한 방향성 2차원 타원형 필터는 사람의 크기나 포즈에 관계없이 사람을 검출하고 추적한다. 2D 공간-깊이 히스토그램에 특정 각도로 향하는 4개의 2차원 타원형 필터들을 적용하고, 필터링 된 히스토그램에서 임계값을 통해서 사람을 검출한 다음, MO2D2EFs 중 승적 결과가 가장 큰 2차원 타원형 필터의 방향을 사람의 방향으로 판단한다. 사람 후보들은 얼굴을 검출하거나 검출된 사람의 선택된 방향의 머리-어께 형태를 정합함으로서 검증한다. 실험 결과는 (1) 포즈 각도 예측의 정확도는 약 88%이고, (2) 제안한 MO2DEFs를 사용한 사람 검출의 성능이 OOSAF를 사용한 사람 검출의 성능보다 $15{\sim}20%$만큼 향상되었으며, 특히 정면이 아닌 사람의 경우에 더 향상이 있었다.

Trinocular Vision System을 이용한 물체 자세정보 인식 향상방안 (A Study on the Improvement of Pose Information of Objects by Using Trinocular Vision System)

  • 김종형;장경재;권혁동
    • 한국생산제조학회지
    • /
    • 제26권2호
    • /
    • pp.223-229
    • /
    • 2017
  • Recently, robotic bin-picking tasks have drawn considerable attention, because flexibility is required in robotic assembly tasks. Generally, stereo camera systems have been used widely for robotic bin-picking, but these have two limitations: First, computational burden for solving correspondence problem on stereo images increases calculation time. Second, errors in image processing and camera calibration reduce accuracy. Moreover, the errors in robot kinematic parameters directly affect robot gripping. In this paper, we propose a method of correcting the bin-picking error by using trinocular vision system which consists of two stereo cameras andone hand-eye camera. First, the two stereo cameras, with wide viewing angle, measure object's pose roughly. Then, the 3rd hand-eye camera approaches the object, and corrects the previous measurement of the stereo camera system. Experimental results show usefulness of the proposed method.

Golf Green Slope Estimation Using a Cross Laser Structured Light System and an Accelerometer

  • Pham, Duy Duong;Dang, Quoc Khanh;Suh, Young Soo
    • Journal of Electrical Engineering and Technology
    • /
    • 제11권2호
    • /
    • pp.508-518
    • /
    • 2016
  • In this paper, we propose a method combining an accelerometer with a cross structured light system to estimate the golf green slope. The cross-line laser provides two laser planes whose functions are computed with respect to the camera coordinate frame using a least square optimization. By capturing the projections of the cross-line laser on the golf slope in a static pose using a camera, two 3D curves’ functions are approximated as high order polynomials corresponding to the camera coordinate frame. Curves’ functions are then expressed in the world coordinate frame utilizing a rotation matrix that is estimated based on the accelerometer’s output. The curves provide some important information of the green such as the height and the slope’s angle. The curves estimation accuracy is verified via some experiments which use OptiTrack camera system as a ground-truth reference.

실시간 목 자세 모니터링을 위한 웨어러블 센서를 이용한 두개척추각 추정 (The Estimation of Craniovertebral Angle using Wearable Sensor for Monitoring of Neck Posture in Real-Time)

  • 이재현;지영준
    • 대한의용생체공학회:의공학회지
    • /
    • 제39권6호
    • /
    • pp.278-283
    • /
    • 2018
  • Nowdays, many people suffer from the neck pain due to forward head posture(FHP) and text neck(TN). To assess the severity of the FHP and TN the craniovertebral angle(CVA) is used in clinincs. However, it is difficult to monitor the neck posture using the CVA in daily life. We propose a new method using the cervical flexion angle(CFA) obtained from a wearable sensor to monitor neck posture in daily life. 15 participants were requested to pose FHP and TN. The CFA from the wearable sensor was compared with the CVA observed from a 3D motion camera system to analyze their correlation. The determination coefficients between CFA and CVA were 0.80 in TN and 0.57 in FHP, and 0.69 in TN and FHP. From the monitoring the neck posture while using laptop computer for 20 minutes, this wearable sensor can estimate the CVA with the mean squared error of 2.1 degree.

Cascade Extended Kalman Filter 기반의 차량동특성 및 도로종단경사 추정 (Vehicle Dynamics and Road Slope Estimation based on Cascade Extended Kalman Filter)

  • 김문식;김창일;이광수
    • 전자공학회논문지
    • /
    • 제51권9호
    • /
    • pp.208-214
    • /
    • 2014
  • 차선유지 제어시스템, 적응식순항 제어시스템과 같은 첨단운전 지원시스템은 기본적으로 차량의 거동 정보를 기반으로 구동되지만, 최근 도로의 기하학적 정보를 추가적으로 활용하는 연구가 활발히 진행되고 있다. 특히, 도로의 종단경사는 차량의 가감속 제어 및 항법알고리즘 구현에 있어 필수적인 정보로서 DGPS-RTK와 같은 고가의 장비로 직접 측정하는 방법과 디지털 맵에 저장된 속성정보를 활용하는 방식이 제안되고 있으나, 상용화 관점에서는 아직 많은 문제점이 존재한다. 따라서, 본 논문에서는 추가 센서의 장착없이 연속형 확장칼만필터를 활용하여 차량의 동특성과 도로종단경사를 효율적으로 추정하는 알고리즘을 제안한다. 도로종단경사를 포함하는 3자유도 차량동역학 모델과 차량의 내부 네트워크롤 통해 수집할 수 있는 차량의 상태정보를 기반으로 확장칼만필터를 설계하여 차량의 동특성과 도로종단경사를 추정한다. 제안된 알고리즘은 시뮬레이션과 실차실험을 통해 그 성능을 검증하였다.

A Model-based 3-D Pose Estimation Method from Line Correspondences of Polyhedral Objects

  • Kang, Dong-Joong;Ha, Jong-Eun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.762-766
    • /
    • 2003
  • In this paper, we present a new approach to solve the problem of estimating the camera 3-D location and orientation from a matched set of 3-D model and 2-D image features. An iterative least-square method is used to solve both rotation and translation simultaneously. Because conventional methods that solved for rotation first and then translation do not provide good solutions, we derive an error equation using roll-pitch-yaw angle to present the rotation matrix. To minimize the error equation, Levenberg-Marquardt algorithm is introduced with uniform sampling strategy of rotation space to avoid stuck in local minimum. Experimental results using real images are presented.

  • PDF