• Title/Summary/Keyword: Portland-blended cement

Search Result 115, Processing Time 0.023 seconds

Portland-Blended Cement with Reduced CO2 using Trass Pozzolan (화산회 가루를 사용함에 의한 CO2-저방출 포트랜드-혼합 시멘트 제조)

  • Manaf, A.;Indrawati, V.
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.3
    • /
    • pp.490-494
    • /
    • 2011
  • This paper reports the use of supplementary cementing materials (SCMs) derived from local resources, for the partial replacement of Portland cement to reduce $CO_2$ emission during cement production. Replacement of Portland clinkers up to 20 wt.% with SCMs in normal cements reduced $CO_2$ emission by 0.18 kg $CO_2$/kg. The compressive strength exceeded the standard specification for Portland cement ASTM C-150. Blended cement samples containing 20% Portland clinker replacement had compressive strengths of 37 MPa after 28 days of curing time. The microstructure evolution of blended cement at a composition of 80:20 was similar to that of the 100% Portland cement, where the structure between days 28 and 56 reached a steady state. Blended cements with compositions of 70:30 and 60:40 still showed progress of CSH plate formation and the lack of massive structure development. It is shown that the use of supplementary cementing materials could be as one of alternative ways to reduce $CO_2$ emissions during cement production.

Evaluation on Sulfate Attack Resistance of Cement Matrix (시멘트 경화체의 황산염침식 저항성 평가)

  • 문한영;김홍삼;이승태
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.5
    • /
    • pp.141-151
    • /
    • 2000
  • Compressive strength, sulfate deterioration factor(SDF) and length change of 5 types of mortars immersed in sodium sulfate solution were observed. As the results of tests, it was found that the sulfate resistance of blended cement mortars were superior to that of portland cement mortars. Pore volume with diameter larger than 0.1 $\mu\textrm{m}$ of 5 types of pastes indicated that the micro-structures of blended cement pastes were denser, due to pozzolan reaction and latent hydraulic properties, than those of portland cement pastes. The XRD, ESEM, EDS and TG analyses demonstrated that the reactants such as ettringite and gypsum were significantly formed in portland cement pastes. Besides, compared with the $Ca(OH)_2$ content of ordinary portland cement pastes immersed in water and sodium sulfate solution, the $Ca(OH)_2$ contents of fly ash blended cement and ground granulated blast-furnace slag cement paste were about 58% and 28% in water, and 55% and 20% in sodium sulfate solution, respectively.

A Study on the Durability of Concrete made with Various Cements Containing Additive (시멘트 혼합재 첨가에 따른 콘크리트 내구 특성)

  • 김창범;조계흥;최재웅;김동석;박춘근
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04b
    • /
    • pp.687-692
    • /
    • 1998
  • This paper covers concrete durability made with portland cement type I and V, and granulated blast furnace slag blended cements 40 and 60%. Typical properties of cements and compressive strength development, drying shrinkage, carbonation, freezing and thawing properties of concretes were investigated. In addition, effects of CI penetration on various concretes with/without a freezing and thawing treatment were also studied. Portland cement type I and V were superior to the blended cement in the properties of compressive strength development, drying shrinkage, carbonation and freezing and thawing durability. In the respect of resistant of CI Blended cement showed better than the portland cement due to high permeability. But the blended cement with a freezing and thawing treatment presented a much decreased resistance of CI penetration.

  • PDF

Hydration and mechanical properties of Blended Cement added Bypass dust (By-pass Dust를 첨가한 혼합 시멘트의 수화 및 기계적 특성)

  • 성진욱;나종윤;김창은;이승헌;이봉한;김수룡;류한웅
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.33-39
    • /
    • 1999
  • This study was conducted to confirm the effect of bypass dust on the hydration and mechanical properties of the cement pastes and mortar obtained from ordinary Portland cement (OPC), OPC-slag and OPC-fly ash system. The rate of heat evolution is accelerated with the content of By-pass Dust(BD). total heat evolution increased because alkali-chlorides activated the hydration of blended cement. Compressive strength and bound water content show maximum value at 5wt% By-pass Dust(BD) on each curing time in ordinary Portland cement and slag blended cement. Ca(OH)2 content of Ordinary Portland Cement increased as the content of BD and curing time. In blended cement, the formation of Ca(OH)2 is active at early hydration stage. By pozzolanic reaction, the content of Ca(OH)2 is decreased as curing time goes by. According to the BD content stable chlorides complex of Friedel's salt (C3A·CaCl2·10H2O) is created. Due to the hydration activation effect of chlorides and alkali we observed Type II C-S-H, which developed into densest microstructure.

  • PDF

Mathematical model of strength and porosity of ternary blend Portland rice husk ash and fly ash cement mortar

  • Rukzon, Sumrerng;Chindaprasirt, Prinya
    • Computers and Concrete
    • /
    • v.5 no.1
    • /
    • pp.75-88
    • /
    • 2008
  • This paper presents a mathematical model for strength and porosity of mortars made with ternary blends of ordinary Portland cement (OPC), ground rice husk ash (RHA) and classified fly ash (FA). The mortar mixtures were made with Portland cement Type I containing 0-40% FA and RHA. FA and RHA with 1-3% by weight retained on a sieve No. 325 were used. Compressive strength and porosity of the blended cement mortar at the age of 7, 28 and 90 days were determined. The use of ternary blended cements of RHA and FA produced mixes with good strength and low porosity of mortar. A mathematical analysis and two-parameter polynomial model were presented for the strength and porosity estimation with FA and RHA contents as parameters. The computer graphics of strength and porosity of the ternary blend were also constructed to aid the understanding and the proportioning of the blended system.

Application of Mass Concrete Exposed to Marine Environment (염해환경에 노출된 매스콘크리트의 시공)

  • Kim Dong Seok;Park Sang Joon;Shin Hong Chol;Yoo Jae Kang
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.487-490
    • /
    • 2005
  • This study was performed to investigate the effect of ternary blended cement concrete mixed with slag cement and fly ash on the compressive strength, the resistance to chloride ion penetration and reduction of hydration heat. Each performance of ternary blended cement concrete compared with binary blended cement concrete and ordinary portland cement concrete. As a result, it was concluded that ternary blended cement concrete is suitable to mass concrete under marine environment.

  • PDF

The simulation of hydration of Portland cement blended with chemical inert filler

  • Xiaoyong, Wang;Lee, Han-Seung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.1041-1044
    • /
    • 2008
  • The addition of chemical inert filler in blended cement, such as limestone or chemical inert silica fume, will produce a physical effect on cement hydration. Due to the high surface area of inert filler in the mixtures, it provides sites for the nucleation and growth of hydration products, thus improving the hydration rate of cement compounds and consequently increasing the strength at early age. This paper proposes a model of hydration of Portland cement blended with chemical inert filler. This model considers the influence of water to cement ratio, cement particle size, cement composition and addition of chemical inert filler on hydration. The heat evolution, degree of hydration and porosity are obtained as accompanied results in hydration process. The prediction results agree well with experiment results.

  • PDF

Properties of Cement Mortar Immersed in Chemical Solution (화학약품용액에 침지한 시멘트모르터의 물성변화)

  • 문한영;김진철;김홍삼;유정훈;이승태
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.407-410
    • /
    • 1999
  • The 5 types of cement mortar was immersed in the various chemical solutions for 400 days and then the compressive strength and the length change were measured to consider the chemical resistance at required ages. Due to the effect of flyashe and GGBF slag, the compressive strength of blended cement mortar was higher than that of portland cement mortar at long ages. According to the result of length change, the mineral admixture in blended cement had an indluence on reducing the amount of C3A, the cause of making concrete expand, and it made the formation of cements mortar denser so that the length change was much smaller than that of the portland cement mortar. However, the OPC mortar immersed in Na2SO4 solution for 180 days shows 4 times bigger length change chante than the blended cement mortar.

  • PDF

Strength and chloride penetration of Portland cement mortar containing palm oil fuel ash and ground river sand

  • Rukzon, Sumrerng;Chindaprasirt, Prinya
    • Computers and Concrete
    • /
    • v.6 no.5
    • /
    • pp.391-401
    • /
    • 2009
  • This paper presents a study of the strength and chloride penetration of blended Portland cement mortar containing ground palm oil fuel ash (POA) and ground river sand (GS). Ordinary Portland cement (OPC) was partially replaced with POA and GS. Compressive strength, rapid chloride penetration test (RCPT) and chloride penetration depth of mortars were determined. The GS only asserted the packing effect and its incorporation reduced the strength and the resistance to chloride penetration of mortar. The POA asserted both packing and pozzolanic effects. The use of the blend of equal portion of POA and GS also produced high strength mortars, save cost and excellent resistance to chloride penetration owing to the synergic effect of the blend of POA and GS. For chloride depth, the mathematical model correlates well with the experimental results. The computer graphics of chloride depth of the ternary blended mortars are also constructed and can be used to aid the understanding and the proportioning of the blended system.

The Mortar Properties of Portland Cements Blended with Modified Coal Ashes (가공된 석탄재를 사용한 석탄재혼합시멘트의 모르터 특성)

  • 홍원표;노재성;조헌영;정수영;김무한
    • Journal of the Korean Ceramic Society
    • /
    • v.27 no.7
    • /
    • pp.833-840
    • /
    • 1990
  • For the development of multi-functional materials which has water reducing power, air entraining power and waterproofing power as well as blending additive in cement mortar the coal ash was modified with asphalt-stearic acid or asphalt-boiled oil mixtures by mechanical treatment. And the physical properties of cement mortar blended with modified coal ashes were compared with those of the water-tightness-cement mortar and the ordinary-portland-cement mortar added with AE.water reducing agent. The mortar of coalash-blend-cement modified with asphalt-stearic mixture was increased acid about 20% in initial strengths and decreased about 20% in water absorption ratio than those of ordinary coalash-blend-cement. The mortar of coalash-blend-cement modified with asphalt-bolied oil mixture was similar to the cement mortar added with AE.water reducing agent in water reduction ratio, air entraining conents and the initial strengths, also was similar to the water-tightness-cement mortar in water absorption and water permeability ratios.

  • PDF