• Title/Summary/Keyword: Portland cements

Search Result 79, Processing Time 0.025 seconds

Sulfate Resistance of Portland CementMatrices (포틀랜드시멘트계 경화체의 황산염저항성)

  • 문한영;이승태;김홍삼
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.714-717
    • /
    • 2000
  • To consider sulfate resistance of cement pastes and motars for 3 types of portland cements which have different $C_3A$ contents an silicate ratio($C_3S/C_2S$), they were immersed in 5% sodium sulfate solution for 400 days. SEM analysis and ($Ca(OH)_2$ contents of cement pastes, and compressive strength and length change of cement mortars, were performed to investigate the effects of ($C_3$ and ($Ca(OH)_2$ contents. According to the results of this study, low heat portland cement pastes, and compressive strength and length change of cement mortars, were performed to investigate the effects of C3A and ($Ca(OH)_2$ contents. According to the results of this study, low heat portland cement had a good sulfate resistances because of a small quantity of gypsum and ettringite due to less ($Ca(OH)_2$ contents. However, ordinary portland cement had an adverse result. This was also confirmed by SEM analysis.

  • PDF

Prediction of chloride binding isotherms for blended cements

  • Ye, Hailong;Jin, Xianyu;Chen, Wei;Fu, Chuanqing;Jin, Nanguo
    • Computers and Concrete
    • /
    • v.17 no.5
    • /
    • pp.655-672
    • /
    • 2016
  • A predictive model for chloride binding isotherms of blended cements with various supplementary cementitious materials (SCMs) was established in this work. Totally 560 data points regarding the chloride binding isotherms of 106 various cements were collected from literature. The total amount of bound chloride for each mixture was expressed a combinational function of the predicted phase assemblage and binding isotherms of various hydrated phases. New quantitative expressions regarding the chloride binding isotherms of calcium-silicate-hydrate (C-S-H), AFm, and hydrotalcite phases were provided. New insights about the roles of SCMs on binding capabilities of ordinary portland cements (OPC) were discussed. The proposed model was verified using separate data from different sources and was shown to be reasonably accurate.

Investigation on Hydration Process and Biocompatibility of Calcium Silicate-Based Experimental Portland Cements

  • Lim, Jiwon;Guk, Jae-Geun;Singh, Bhupendra;Hwang, Yun-Chan;Song, Sun-Ju;Kim, Ho-Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.4
    • /
    • pp.403-411
    • /
    • 2019
  • In this work, the hydration process and cytotoxicity of lab-synthesized experimental Portland cements (EPCs) were investigated for dental applications. For this purpose, EPCs were prepared using laboratory-synthesized clinker constituents, tricalcium silicate (C3S), dicalcium silicate (C2S), and tricalcium aluminate (C3A). C-A was prepared by the Pechini method, whereas C3S and C2S were synthesized by solid-state reactions. The phase compositions were characterized by X-ray diffraction (XRD) analysis, and the hydration process of the individual constituents and their combinations, with and without the addition of gypsum, was investigated by electrochemical impedance spectroscopy (EIS). Furthermore, four EPC compositions were prepared using the lab-synthesized C-A, C3S, and C2S, and their hydration processes were examined by EIS, and their cytotoxicity to HPC and HIPC cells were tested by performing an XTT assay. None of the EPCs exhibited any significant cytotoxicity for 7 days, and no significant difference was observed in the cell viabilities of ProRoot MTA and EPCs. The results indicated that all the EPCs are sufficiently biocompatible with human dental pulp cells and can be potential substitutes for commercial dental cements.

Development in Planting Porous Block for Revegetation (녹화용 다공질 식재 블럭의 개발)

  • Ahn, Young-Hee;Choi, Kyoung-Young
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.5 no.4
    • /
    • pp.1-9
    • /
    • 2002
  • This study is carried out to make the environmentally affinitive porous planting block for revegetation and to make a effective program for greening plans. The summary is shown below. 1. In order to get stronger intensity and distribute proper porosity in the block for planting, the cements mixed with fine soil were used and the finer in soil grains gives the stronger in intensity of the cements. Use of the furnace slag cements instead of the portland cements showed relatively stronger in intensity of the block. The intensity of the block became stronger when the mixed ratio of the cements to soil is 5 : 1, but the pore space ratio was lower. The percolate pH of the portland cements after one month of treatment was 13.1 but the percolate pH of the furnace slag cements was shown lower. To mold proper porous planting blocks, the proper combination of additives such as the dehydrating agent, elastic agent and adhesives into the mixture of cements and soil gives better effectives. 2. After molding the porous planting blocks, it gave a better result when the grains of the filler made of peat moss, upland soil and compound fertilizer were smaller than 2 mm in size. Shaking of the filling materials also gave the better result, but it took more time and cost much more. Therefore, it was better when the filling materials were mixed with water first then flew down for stuffing. 3. It was necessary to cover with soil after seeding or planting on the porous planting blocks. The proper thickness of the soil to help root development and keep moisture is about 3~5 cm. 4. The plants for planting on the porous planting block were required stronger in the growth condition of their roots and their environmental adaptability. The average germination percentage and rate of Platycodon grandiflorum on the porous planting block were 88.8% and 85% accordingly and their rate is very uniform. The germination rates of Dianthus superbus var. longicalycinus and Taraxacum officinale were more than 50%. These grass species, Chelidonium majus var. asiaticum, Lysimachia mauritiana and Scabiosa mansenensis were the suggested biennial grasses in the planting area where exchanging of the seedling or nursery plants was not necessary because their germination rates were 59.3, 45.6 and 40.3% accordingly. Viola kapsanensis, Chrysanthemum sp., Taraxacum sp. and Iris ensata var. spontanea are the grass species that could be used by seeding for greening. However, the germination rate of Solidago virga-aurea var. asiatica, Aster scaber and Lythrum anceps were lower than 10%. The coverage ratio of Ixeris stolonifera is more than 80% after 60 days seeding and the root length of most of species are more than 10 cm except Iris ensata var. spontanea and Platycodon grandiflorum because their root developed thicker than other species.

Effect of Impurities Included in the Domestic Waste Phosphogypsum on Hydration of Portland Cement (국산 인산석고에 함유된 불순물들이 Portland Cement의 수경성에 미치는 영향)

  • 인식환;정형진
    • Journal of the Korean Ceramic Society
    • /
    • v.18 no.4
    • /
    • pp.237-246
    • /
    • 1981
  • The effects of impurities, included in the by-produced phosphogypsum from the dihydrate process, on the hydration of portland cement were studied. Six gypsums were adopted in this study; four different raw phosphogypsums from domestic fertilizer plants, a reprocessed phosphogypsum and a reagent grade pure gypsum. Cements with differing $SO_3$ content, were synthesized by grinding two different commercial clinkers and the above six gypsums together. The effects of the impurities were investigated by measuring the setting time, the non-evaporable water coatent, X-ray phase analysis of cement pastes and the compressive strength of cement mortar specimens. It was found that the soluble $P_2O_5$ known as one of injurious impurities on the hydration of portland cement, included in the demestic raw phosghoypsum cxneedigply by far the specified amounts of the Korean Industrial Standards (L9005), and retarded the setting time severely, thus the strength development of cement was delayed at the earlier stage of hydration.

  • PDF

Sea Water Resistance of the Concrte Deteriorated by Repeat of Immersing and Drying in Sea Water (해수의 건습반복 촉진열화에 따른 콘크리트의 내해수성)

  • 박춘근;김병권;최재웅;고만기
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.307-312
    • /
    • 1997
  • The sea water resistance of cement and concrete must be compared when it used for construction in the ocean. The sea water resistance of the concrete specimens using three types of cements such as ordinary Portland cement, sulfate resistance Portland cement, blastfurnace slag cement were studied. In this study, an accelerated test for access sea water resistance by subjecting the concrete specimens to repeated cycles of concentrated sea water immersion and hot wind drying was employed. This study proved that sulfate resistance Portland cement had higher resistance for sea water.

  • PDF

Microstructural Characteristics of Alkali-Activated Cements Incorporating Fly Ash and Slag (플라이애시와 슬래그 혼합 알칼리 활성 시멘트의 미세구조 특성)

  • Jang, Jeong Gook
    • Journal of Urban Science
    • /
    • v.7 no.1
    • /
    • pp.39-43
    • /
    • 2018
  • This study investigates microstructural characteristics of alkali-activated cements incorporating slag and fly ash. Samples were prepared with four fly ash:slag ratios, i.e., 100:0, 90:10, 70:30 and 50:50, and they were synthesized by using an alkali activator. Microstructural characteristics of the alkali-activated cements were determined by XRD, TGA, SEM, N2 gas adsorption/desorption methods, and compressive strength test. The results showed that properties of alkali-activated fly ash/slag were significantly affected by slag contents. Alkali-activated fly ash/slag with slag content of 30-50% showed higher compressive strength than ordinary Portland cement paste. An increase in slag content resulted in a denser microstructure, which composed of amorphous gel, therefore contributed to strength development of the material.

An Effect of $Ca(OH)_2$ on Development of an Early Age Strength of GGBFS Cement (고로슬래그 시멘트의 초기강도 발현에 있어서 수산화칼슘의 영향)

  • 이제방;김재신;소승영;소양섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.64-69
    • /
    • 1999
  • Slags are by-products of the metallurgical industry. The most important slag from the standpoint of the quantity used as building material is iron blastfurnace slag. Slags are either crystalline stable solid used as aggregates or glassy material used as hydraulic binder. Slag cements are low heat of hydration cements. Slags react more slowly with than portland cement but they can be activated chemically. Activatiors can be either alkaline activators such as soda, lime, sodium carbonate, sodium silicate or sulphate activators such as calcium sulphate or phosphogypsum. So, in this study slaked lime was used as an activator that the compressive strength of this modified cement(M1 type) is high range in early age. And initial setting time of M1 type cement was shorter than conventional cements.

  • PDF

Properties of Low Heat Portland(Belite Rich) Cement Concrete (저열 포틀랜드(벨라이트)시멘트 콘크리트의 특성)

  • 하재담;김기수;김동석;구본창;조계홍;이동윤
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10c
    • /
    • pp.66-71
    • /
    • 1998
  • Recently, it has been increased to construct massive concrete structures, like under-ground structure, offshore structure etc., ie. concrete construction have become larger and higher and are demanding lower heat concrete to prevent thermal cracking. It has been progressed to replace cements with fly-ash and slag to lower heat of hydration, but it is hard to control quality of the mineral admixtures in stage of adjusting of real construction. Application of low heat portland(Belite Rich) cement for the mass concrete is the best solution to satisfied those requirements. Here are explained the basic properties of fresh concrete as well as hardened concrete of using low heat portland cement(LHPC). Also, we compare the results of adiabatic temperature rise test using LHPC and OPC.

  • PDF

Mathematical model of strength and porosity of ternary blend Portland rice husk ash and fly ash cement mortar

  • Rukzon, Sumrerng;Chindaprasirt, Prinya
    • Computers and Concrete
    • /
    • v.5 no.1
    • /
    • pp.75-88
    • /
    • 2008
  • This paper presents a mathematical model for strength and porosity of mortars made with ternary blends of ordinary Portland cement (OPC), ground rice husk ash (RHA) and classified fly ash (FA). The mortar mixtures were made with Portland cement Type I containing 0-40% FA and RHA. FA and RHA with 1-3% by weight retained on a sieve No. 325 were used. Compressive strength and porosity of the blended cement mortar at the age of 7, 28 and 90 days were determined. The use of ternary blended cements of RHA and FA produced mixes with good strength and low porosity of mortar. A mathematical analysis and two-parameter polynomial model were presented for the strength and porosity estimation with FA and RHA contents as parameters. The computer graphics of strength and porosity of the ternary blend were also constructed to aid the understanding and the proportioning of the blended system.