• 제목/요약/키워드: Portland

Search Result 1,236, Processing Time 0.028 seconds

Corrosion of Steel in Concrete Deteriorated by Freezing/Thawing and Carbonation (동결융해 및 중성화를 받은 콘크리트의 철근 부식 특성)

  • 정해문;김종우;이대근;최광일
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.293-298
    • /
    • 1997
  • Corrosion of steel reinforcing in concrete deteriorated by freezing/thawing and carbonation was characterized. Concrete specimens were prepared using various kinds of cements such as ordinary portland cement (type I), low heat portland cement (type IV, belite rich cement), sulphate resistance portland cement (type V), blast furnace slag portland cement and ternary blended cement. Of various cements, type V and type IV with lower $C_3A$ content revealed better steel corrosion resistance after freezing/thawing and carbonation. $C_3A$ content in cement might affect freezing/thawing resistance in sea water.

  • PDF

Sea Water Resistance of the Concrte Deteriorated by Repeat of Immersing and Drying in Sea Water (해수의 건습반복 촉진열화에 따른 콘크리트의 내해수성)

  • 박춘근;김병권;최재웅;고만기
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.307-312
    • /
    • 1997
  • The sea water resistance of cement and concrete must be compared when it used for construction in the ocean. The sea water resistance of the concrete specimens using three types of cements such as ordinary Portland cement, sulfate resistance Portland cement, blastfurnace slag cement were studied. In this study, an accelerated test for access sea water resistance by subjecting the concrete specimens to repeated cycles of concentrated sea water immersion and hot wind drying was employed. This study proved that sulfate resistance Portland cement had higher resistance for sea water.

  • PDF

Evaluation on Sulfate Attack Resistance of Cement Matrix (시멘트 경화체의 황산염침식 저항성 평가)

  • 문한영;김홍삼;이승태
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.5
    • /
    • pp.141-151
    • /
    • 2000
  • Compressive strength, sulfate deterioration factor(SDF) and length change of 5 types of mortars immersed in sodium sulfate solution were observed. As the results of tests, it was found that the sulfate resistance of blended cement mortars were superior to that of portland cement mortars. Pore volume with diameter larger than 0.1 $\mu\textrm{m}$ of 5 types of pastes indicated that the micro-structures of blended cement pastes were denser, due to pozzolan reaction and latent hydraulic properties, than those of portland cement pastes. The XRD, ESEM, EDS and TG analyses demonstrated that the reactants such as ettringite and gypsum were significantly formed in portland cement pastes. Besides, compared with the $Ca(OH)_2$ content of ordinary portland cement pastes immersed in water and sodium sulfate solution, the $Ca(OH)_2$ contents of fly ash blended cement and ground granulated blast-furnace slag cement paste were about 58% and 28% in water, and 55% and 20% in sodium sulfate solution, respectively.

A Comparison Study on Quality Regulation of China and Korea Cement (중국과 한국 시멘트의 품질규정에 대한 비교 연구)

  • Pei, Chang-Chun;Jin, Hu-Lin;Li, Bai-Shou;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2006.05a
    • /
    • pp.159-162
    • /
    • 2006
  • This study generally compared and investigated cement type and quality of China and Korea. Cement in Korea is divided into five such as ordinary, high early strength, moderate heat, low heat and sulfate resistance portland cement. However cement in China is divided into portland cement($P{\cdot}I,\;P{\cdot}II$) and ordinary portland cement($P{\cdot}O$) with admixture displacement ratio and it is again divided into 6 level and 7 level with 28 days compressive strength. In addition China classified cement into several standards, such as Mgo, SO3,, igloss, blame, setting time, stability, strength, alkali and sampling test. Therefore it should be careful to conclude so quickly without right understanding whether quality of China cement is bad or good. The better way to evaluate China cement is synthetically understanding a value engineering and consumer awareness.

  • PDF

Properties of portland cement concrete with the addition of a modified sulfur polymer (개질 유황 고분자가 혼입된 포틀랜드 시멘트 콘크리트의 특성)

  • Yu, Seung-Gun;Choi, Heon-Jin;Kwon, Hyok;Park, No-Kyung;Kim, Goo-Dae
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.20 no.4
    • /
    • pp.192-196
    • /
    • 2010
  • This paper describes the effects of modified sulfur polymer content on the compressive strength and chemical resistance of Portland cement concrete with and without the modified sulfur polymer. The Portland cement concrete which contained modified sulfur had much higher strength than the Portland cement concrete without modified sulfur, workability is stabled at $55^{\circ}C$. Alkali tolerance test was evaluated by immersing these concrete specimens in 13 % $CaCl_2$ solutions. In the alkali tolerance test, the resistance of Portland cement concrete with modified sulfur to $CaCl_2$ increased compared with Portland cement concrete without modified sulfur.

Setting Time, Compressive Strength and Drying Shrinkage of Mortar with Alpha-Calcium Sulfate Hemihydrate (α형 반수석고를 치환한 모르타르의 응결 및 압축강도, 건조수축 특성)

  • Lee, Kye-Hyouk;Kim, Gyu-Yong;Lee, Bo-Kyeong;Shin, Kyoung-Su;Nam, Jeong-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.5
    • /
    • pp.117-124
    • /
    • 2017
  • In this study, to evaluate the setting time, compressive strength and drying shrinkage of ordinary Portland cement and Portland blast-furnace slag cement mortar with 0, 10, 20, 30 wt.% alpha-calcium sulfate hemihydrate. As a results, as the replacement ratio of alpha-calcium sulfate hemihydrate increased, the initial setting time of ordinary Portland cement and Portland blast-furnace slag cement mortar was faster. In addition, the compressive strength decreased with increasing replacement ratio of alpha-calcium sulfate hemihydrate in both ordinary Portland cement mortar and Portland blast-furnace slag cement mortar. The strength development of Portland blast-furnace slag cement mortar with alpha-calcium sulfate hemihydrate was effective than that of ordinary Portland cement mortar. On the other hand, in the case of the mortar with alpha-calcium sulfate hemihydrate, it was confirmed that shrinkage deformation was reduced at the early age by growth pressure of needle-shaped ettringite crystals produced by incorporation of alpha-calcium sulfate hemihydrate. However, the effect of inhibiting shrinkage deformation of mortar with alpha-calcium sulfate hemihydrate was not significant as the age passed. Therefore, it is considered that the alpha-calcium sulfate hemihydrate is useful as a construction material.

Study of manufacturing of portland cement and sulfuric acid from waste gypsum and the utilization of anthracite coal other than cokes as reaction promotor (폐석고로부터 시멘트와 유산제조 및 기반응촉진제 탄소의 무연탄 대체에 관한 연구)

  • Lee Suk Woo
    • Cement
    • /
    • s.30
    • /
    • pp.44-50
    • /
    • 1969
  • To manufacture portland cement and sulfuric acid from gypsum has long been established in Europe. As sulfur, more Precisely sulfuric acid, is getting around shortage, it boosts hunt for alternate sources and for new fertilizer process. As the result, all

  • PDF

COMPARISON OF BIOCOMPATIBILITY OF FOUR ROOT PERFORATION REPAIR MATERIALS (치근 천공 치료 재료의 생체친화성의 비교)

  • Kang, Min-Kyung;Bae, In-Ho;Koh, Jeong-Tae;Hwang, Yun-Chan;Hwang, In-Nam;Oh, Won-Mann
    • Restorative Dentistry and Endodontics
    • /
    • v.34 no.3
    • /
    • pp.192-198
    • /
    • 2009
  • This study was carried out in order to determine in vitro biocompatibility of white mineral trioxide aggregate (MTA), and to compare it with that of the commonly used materials, i. e. calcium hydroxide liner (Dycal), glass ionomer cement (GIC), and Portland cement which has a similar composition of MTA. To assess the biocompatibility of each material, cytotoxicity was examined using MG-63 cells. The degree of cytotoxicity was evaluated by scanning electron microscopy (SEM) and a colorimetric method, based on reduction of the tetrazolium salt 2,3 bis {2methoxy 4nitro 5[(sulfenylamino) carbonyl] 2H tetrazolium hydroxide} (XTT) assay. The results of SEM revealed the cells in contact with GIC, MTA. and Portland cement at 1 and 3 days were apparently healthy. In contrast, cells in the presence of Dycal appeared rounded and detached. In XTT assay, the cellular activities of the cells incubated with all the test materials except Dycal were similar, which corresponded with the SEM observation. The present study supports the view that MTA is a very biocompatible root perforation repair material. It also suggests that cellular response of Portland cement and GIC are very similar to that of MTA.

Characterization and antimicrobial efficacy of Portland cement impregnated with silver nanoparticles

  • Nam, Ki Young
    • The Journal of Advanced Prosthodontics
    • /
    • v.9 no.3
    • /
    • pp.217-223
    • /
    • 2017
  • PURPOSE. This study investigated the effects of silver nanoparticle (SN) loading into hydraulic calcium silicate-based Portland cement on its mechanical, antibacterial behavior and biocompatibility as a novel dental bone substitute. MATERIALS AND METHODS. Chemically reduced colloidal SN were combined with Portland cement (PC) by the concentrations of 0 (control), 1.0, 3.0, and 5.0 wt%. The physico-mechanical properties of silver-Portland cement nanocomposites (SPNC) were investigated through X-ray diffraction (XRD), setting time, compressive strength, solubility, and silver ion elution. Antimicrobial properties of SPNC were tested by agar diffusion against Streptococcus mutans and Streptococcus sobrinus. Cytotoxic evaluation for human gingival fibroblast (HGF) was performed by MTS assay. RESULTS. XRD certified that SN was successfully impregnated in PC. SPNC at above 3.0 wt% significantly reduced both initial and final setting times compared to control PC. No statistical differences of the compressive strength values were detected after SN loadings, and solubility rates of SPNC were below 3.0%, which are acceptable by ADA guidelines. Ag ion elutions from SPNC were confirmed with dose-dependence on the concentrations of SN added. SPNC of 5.0 wt% inhibited the growth of Streptococci, whereas no antimicrobial activity was shown in control PC. SPNC revealed no cytotoxic effects to HGF following ISO 10993 (cell viability > 70%). CONCLUSION. Addition of SN promoted the antibacterial activity and favored the bio-mechanical properties of PC; thus, SPNC could be a candidate for the futuristic dental biomaterial. For clinical warrant, further studies including the inhibitory mechanism, in vivo and long-term researches are still required.

DSM Application for Deep Excavation in Singapore (싱가포르 지역 깊은 굴착을 위한 지반개량공법 DSM의 적용 사례)

  • Chun, Youn-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.5
    • /
    • pp.2425-2433
    • /
    • 2011
  • DSM (Deep Soil Mixing) is to establish soil-cement column by injecting of cement slurry and blending it in soft ground and have been introduced to Singapore in 1980s and now a days quite popular and considered as alternative method to the jet grouting for temporary earth retaining works and foundations. Herein this paper, the results of lab mixing test based on comparison of characteristics between OPC (Original Portland Cement) and PBFC (Portland Blast Furnace Slag Cement), DSM field trial test and main installation results including monitoring, was presented and it would be referred to similar site later.