• 제목/요약/키워드: Porthole Extrusion Process

검색결과 38건 처리시간 0.034초

포트홀 다이 압출방식에 의한 AI7003 튜브의 접합강도예측 (Prediction of Welding Pressure in the Non Steady state Porthole Die Extrusion of AI7003 Tubes)

  • 조형호;이상곤;이선봉;김병민
    • 한국정밀공학회지
    • /
    • 제18권7호
    • /
    • pp.179-185
    • /
    • 2001
  • Porthole die extrusion is profitable to manufacture long tube with hollow section. The material through portholes is gathered within chamber and welded under high pressure. This weldability which classifies the quality of tube product is affected by several variables and die shape. But, porthole die extrusion has been executed on the experience of experts due to the complicated die assembly and complexity of metal flow. Analytic approaches that are useful in profitable die design and in the improvement of productivity are inevitably demanded. Therefore, the objective of this study is respectively to analyze the behavior of metal flow and to determine welding pressure of hot extrusion product according to the various billet temperature, bearing length and tube thickness by FE analysis and its results are compared with tube expanding tests.

  • PDF

세레이션형 미세 멀티셀 튜브 압출 및 접합강도 평가 (FE analysis of Extrusion Process and Estimation of welding strength for Micro Multi Cell Tube with Serration)

  • 이정민;김병민;조형호;강충길
    • 한국정밀공학회지
    • /
    • 제22권9호
    • /
    • pp.49-59
    • /
    • 2005
  • This paper describes a development of the extrusion process and estimation of the weldability for multi cell tubes used to cooling system of automobiles. A study on extrusion process is performed through the 3D FE simulation in non-steady state and extrusion experimentation. Also, nano-indentation test is employed to estimate the weldability of tubes. Especially, An evaluation of the weldability using the nano-indentation is accomplished as compared with nano-hardness in welded part and in the others. Finally, the pattern of the mandrel defection is investigated according to shapes of the porthole and/or chamber.

영역분할에 의한 불일치 격자세분화 기법을 이용한 중공형 압출공정의 설계 및 해석 (Design and Analysis of Hollow Section Extrusion using Mismatching Refinement with Domain Decomposition)

  • 박근;양동열
    • 대한기계학회논문집A
    • /
    • 제24권4호
    • /
    • pp.1016-1023
    • /
    • 2000
  • The present work is concerned with three-dimensional finite element analysis of the hollow section extrusion process using a porthole die. The effects of related design parameters are discussed through the finite element simulation for extrusion of a triply-connected rectangular tubular section. For economic computation, mismatching refinement, an efficient domain decomposition method with different mesh density for each subdomain, is implemented. In order to obtain the uniform flow at the outlet, design parameters such as the hole size and the hole position are investigated and compared through the numerical analysis. Comparing the velocity distribution with that of the original design, it is concluded that the design modification enables more uniform flow characteristics. The analysis results are then successfully reflected on the industrial porthole die design.

압출공정 및 제품 향상을 위한 유한요소 해석기법의 적용 (FEM Method Application for Extrusion process and Product improvement)

  • 배재호;이정민;김병민
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.393-396
    • /
    • 2004
  • It have been proceeded that research of analysis of extrusion process using porthole die. recently it is performed partly through the finite element method in the non steady state that design variables. The subject of this research is integrity improvement of speaker body which is being produced by porthole die extrusion in my country. Extrusion load of speaker case, and welding pressure of billet in the chamber are estimated by the means of rigid-plasticity finite element method. And then extrusion of trial was performed to estimate the validity of FE analysis.

  • PDF

서스펜션 암의 포트홀 다이 압출공정 유한요소 해석 (Finite Element Analysis of Porthole Extrusion Process for Al Suspension Arm)

  • 조영준;이상곤;김병민;오개희;박상우
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.247-250
    • /
    • 2006
  • The growing demand for more fuel-efficient vehicles to reduce energy consumption and air pollution is a challenge for the automotive industry. The characteristic properties of aluminum, high strengrth stiffness to weight ratio, good formability, good corrosion resistence, and recycling potential make it the ideal candidate to replace heavier materials in the car to respond to the weight resuction demand within the automotive industry. In this paper, A series of compression test was carried out to find the flow stress of A6082 at 300, 400 and $500^{\circ}C$, then we tried to estimate weldability, extrusion load and effective stress of die in the aluminum extrusion process through the 3D FE simulation at non-steady state for aluminum automotive parts.

  • PDF

반용융 직접 압출에 의한 Porthole Die 활용 A7075 심리스 튜브 개발 (Development of Seamless Tube for 7075 Al Wrought Alloys by Direct Thixoextrusion process utilizing Porthole Die)

  • 장동인;김세광
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.227-230
    • /
    • 2009
  • The aim of this study was to improve extrudability limit, eliminate welding line and obtain optimum thixoextrusion conditions for manufacturing tubes of 7075 Al wrought alloy. By thixoextrusion, it was possible to improve deformability, control isotropy with extrusion direction, eliminate welding line (seamless) and save cost due to low energy consumption compared with conventional extrusion processes. The welded part was not observed at the welding line area. The grains of thixoextruded tube were homogeneously distributed and equiaxed grains were observed. Therefore, thixoextrusion is the most effective variable for the control of the magnitude of the welding line.

  • PDF

Al3003 12셀 컨덴서 튜브의 압출을 위한 공정해석 및 금형설계 (Process Analysis and Die Design for Al3003 Condenser Tube Extrusion with 12 Cell)

  • 이상호;이정민;조형호;조훈;김문배;김병민
    • 한국정밀공학회지
    • /
    • 제24권11호
    • /
    • pp.44-51
    • /
    • 2007
  • Condenser tubes are mainly produced by precision extrusion with a porthole die and are used in the flow pass of refrigerant cooling systems in automobiles. The recent technical trend of condenser tube requires the tube to be of more multi cellizing, high strength and small size, and to increase the heat transfer area and heat efficiency. Hence, this paper is shown that the results of FE-simulation are in good agreement with the experimental ones. Finally, the extrusion die shape is proposed through analysis of FE-simulation and performance of trial extrusion. Chamber shape dimension and initial temperatures of die is adjusted analysis results. And the possibility of extrusion is estimated that forming load, welding pressure and stress analysis of die in this paper. The validity of simulated results was verified into extrusion experiments on the condenser tubes.

곡률압출공정을 이용한 알루미늄 Bumper Back Beam 개발 (Development of Al Bumper Back Beam by Using Curvature Extrusion Process)

  • 이상곤;조영준;김병민;박상우;오개희
    • 대한기계학회논문집A
    • /
    • 제33권5호
    • /
    • pp.502-507
    • /
    • 2009
  • Curvature extrusion process has several advantages in comparison to the conventional extrusion and bending process. In the curvature extrusion, the extruded part is directly bent during extrusion. Therefore, it does not need additional bending process after extrusion. In the curvature extrusion process, it is possible to produce curved extruded products that have a constant or various curvatures. It is essential that we predict the curvatures of the extruded product to meet the required curvatures. This paper proposed a theoretical model that can predict the curvature of extruded product produced by the curvature extrusion process. Using the proposed model the movement of guide tool that causes the bending of extruded product was controlled to produce the required curved automotive Al bumper back beam. The effectiveness of the proposed prediction model and the movement of guide tool were verified by the FE analysis and curved extrusion experiment.