The appropriateness of introducing blockchain technology into food safety management systems was evaluated by conducting a survey of experts on the effectiveness and constraint evaluation indicators, and a portfolio analysis was conducted to set the priorities of blockchain application. The food safety management activities considered in this study were issuing documents on food import/export, food hygiene rating scheme, civil complaint management in the food sector, food- related certification, risk information management, and food traceability systems. The sectors that can be expected to be effective in the introduction of blockchain technology were food- related certification, food hygiene rating scheme, risk information management, and issuing documents on food import/export. In the case of food traceability systems and civil complaint management, the introduction of blockchain technology was not recommended due to ineffectiveness. From the evaluation of the constraints (e.g., technical limits, cost, legal amendment, personal information disclosure, timeliness, and ease of connection) to be overcome when introducing blockchain into food safety management, it was found that there are more than average constraints in all six areas. In particular, the food traceability system was evaluated to have the most constraints. Issuing documents on food import/export is very effective with the introduction of blockchain technology, but due to high cost and legal restrictions, it is necessary to improve the institutional system in order to introduce blockchain. Among the evaluation sectors, food- related certification, food hygiene rating scheme, and risk information management on foods were suitable for preferentially adopting blockchain technology since these areas might experience greatly improved reliability and transparency through the introduction of blockchain, with relatively low constraints.
The Journal of the Convergence on Culture Technology
/
v.9
no.1
/
pp.89-94
/
2023
Recently, credit risk in the Chinese corporate bond market has increased significantly, and there is a possibility that banks that have invested in corporate bonds may become insolvent. The purpose of this study is to empirically analyze the effect of Chinese commercial banks' investment in securities on financial performance. The analysis results are as follows. First, it is estimated that as the share of securities investment by Chinese commercial banks increases, the bank's profitability decreases. It was found that investment in securities did not have a positive impact on profitability due to the increase in credit risk in the corporate bond market and the increase in marginal companies. Second, it is estimated that as the proportion of securities investment by Chinese commercial banks increases, the bank's soundness deteriorates. As credit risk in China's capital market is increasing, continuous management of non-performing assets is required. Chinese commercial banks need portfolio management through securities investment in addition to loan assets to improve profitability. However, volatility should be managed by adjusting the scale of securities management to an appropriate level.
In this study, it is analyzed whether oil price plays a major role in the pricing return on Koran stock market and examined why the covariance risk between oil and return on stock is different in each industry. Firstly, this study explores whether the expected rate of return on stock is pricing due to global oil price factors as a function of risk premium by using a two-factor APT. Also, it is examined whether spill-over effects of oil price volatility affect the beta risk to oil price. Considering the asymmetry of oil price volatility, we use the GJR model. As a result, it shows that oil price is an independent pricing factor and oil price volatility transmits to stock return in only electricity and electrical equipment. Secondly, the two step-analyzing process is introduced to find why the covariance between oil price factor and stock return is different in each industry. The first step is to study whether beta risk exists in each industry by using two proxy variables like size and liquidity as control variables. The second step is to grasp the systematic relationship between the difference of liquidity and size and beta to oil price factor by using the panel-data model which can be analyzed efficiently using the cross-sectional data formed with time series. Through the analysis, we can argue that oil price factor is an independent pricing factor in only electricity and electrical equipment having the greatest market capitalization, and know that beta risk to oil price factor is a proxy of size in the other industries. According to the result of panel-data model, it is argued that the beta to oil price factor augments when market capitalization increases and this fact supports the first assertion. In conclusion, the expected rate of return of electricity and electrical equipment works as a function of risk premium to market portfolio and oil price, and the reason to make beta risk power differentiated in each industry attributes to the size.
Journal of the Economic Geographical Society of Korea
/
v.14
no.2
/
pp.157-175
/
2011
This paper aims to analyze the characteristics of healthcare REITs' performance and operation, and to examine their use for activating the silver industries in Korea. The results of this study are as follows. First, according to the results of analyzing healthcare REITs' performance, healthcare REITs outperformed average REITs and extended investment proportion compared to total REITs after 2007. This outperforming came from not only rapid growth of silver industries, but also REITs strategy using the structure of sale-and-leaseback and triple-net lease. Second, healthcare REITs use selection and concentration strategy in terms of asset sector, but use portfolio diversification strategy in terms of investment region. Third, according to the analysis results, healthcare REITs are to be useful for activating the silver industries in Korea. In this context, major implications are presented to use healthcare REITs effectively.
This study examines the interactions between KTB spot and futures markets using the daily prices from March 4, 2002 to January 31, 2005. We use Granger causality test, impulse Response Analysis and Variance Decomposition through vector autoregressive analysis (VAR). However, considering the long-term relationships between the level variables of KTB spot and futures, we introduced Vector Error Correction Model. The main results are as follows. According to the results of Granger-causality test and impulse response analysis, we find that the yields of KTB forward have a great influence on the change of KTB spot but not vice versa. In terms of volatility analysis, there is no inter-dependence between KTB forward and spot markets. In the variance decomposition analysis we find that the short-term KTB forward has much more impact on the KTB spot market than the long-term KTB forward does. We think these results are meaningful for bond investors who are in charge of capital asset pricing valuation, risk management and international portfolio management.
The importance of information security has grown alongside the development of information and communication technology. However, companies struggle to select suitable countermeasures within their limited budgets. Sönmez and Kılıç (2021) proposed a model using AHP and mixed integer programming to determine the optimal investment combination for mitigating information security breaches. However, their model had limitations: 1) a lack of objective measurement for countermeasure efficacy against security threats, 2) unrealistic scenarios where risk reduction surpassed pre-investment levels, and 3) cost duplication when using a single countermeasure for multiple threats. This paper enhances the model by objectively quantifying countermeasure efficacy using the beta probability distribution. It also resolves unrealistic scenarios and the issue of duplicating investments for a single countermeasure. An empirical analysis was conducted on domestic SMEs to determine investment budgets and risk levels. The improved model outperformed Sönmez and Kılıç's (2021) optimization model. By employing the proposed effectiveness measurement approach, difficulty to evaluate countermeasures can be quantified. Utilizing the improved optimization model allows for deriving an optimal investment portfolio for each countermeasure within a fixed budget, considering information security costs, quantities, and effectiveness. This aids in securing the information security budget and effectively addressing information security threats.
Kim, Soo-Kyung;Park, Jong-Hae;Byun, Young-Tae;Kim, Tae-Hyuk
Management & Information Systems Review
/
v.29
no.2
/
pp.1-25
/
2010
This study attempted to empirically test the determinants of stock returns in Korean stock market applying multi-factor model proposed by Haugen and Baker(1996). Regression models were developed using 16 variables related to liquidity, risk, historical price, price level, and profitability as independent variables and 690 stock monthly returns as dependent variable. For the statistical analysis, the data were collected from the Kis Value database and the tests of forecasting power in this study minimized various possible bias discussed in the literature as possible. The statistical results indicated that: 1) Liquidity, one-month excess return, three-month excess return, PER, ROE, and volatility of total return affect stock returns simultaneously. 2) Liquidity, one-month excess return, three-month excess return, six-month excess return, PSR, PBR, ROE, and EPS have an antecedent influence on stock returns. Meanwhile, realized returns of decile portfolios increase in proportion to predicted returns. This results supported previous study by Haugen and Baker(1996) and indicated that firm-characteristic model can better predict stock returns than CAPM. 3) The firm-characteristic model has better predictive power than Fama-French three-factor model, which indicates that a portfolio constructed based on this model can achieve excess return. This study found that expected return factor models are accurate, which is consistent with other countries' results. There exists a surprising degree of commonality in the factors that are most important in determining the expected returns among different stocks.
Asia-Pacific Journal of Business Venturing and Entrepreneurship
/
v.2
no.2
/
pp.49-68
/
2007
This paper develop self pre-checkup lists for the validity of business model as web business starters can utilize to open business. In particular, self pre-checkup lists invented by Dr. Bruce Merrifield, is reapplied and modified in appropriate to internet shopping mall business. This paper complete many literature reviews to identify appropriate factors of evaluation such as about the characters of internet business, business validity testing theory for internet business model, pros and cons of e-business and startup ventures, factor analysis of technology valuation, and pros and cons for internet shopping mall. This paper define six different factors; scale of sales, the growth rate of market, competitiveness, risk portfolio, industry upside down, and social conditions, as the factors of evaluating the business attractiveness. Meanwhile, it define characters of CEO, content's power, mutual inclusion, commerce, fulfillment, marketing power as the factors of business appropriateness. This paper also conducts several case studies; company I, D, G of applying the former model. This paper sort out internet business model in imaginations by utilizing self pre-checkup lists of business evaluation. Also, the outcomes of evaluation is expected to provide meaningful future business implications.
Korean Journal of Construction Engineering and Management
/
v.20
no.1
/
pp.73-85
/
2019
Since the beginning of a new century, many Korean construction and engineering companies are facing a very dynamic and fast changing business environment which includes severe competition, higher risk, economic depression, declining revenues and profits, etc. In order to cope with these challenges, they need to secure special capabilities to actively adapt to the paradigm changes. One of those capabilities could be project management capability which allows us to manage organizational resources dynamically and integratively based on project portfolio management concept. The objective of this study is to investigate how the dynamic capability of a project-based organization to control the resource affects the firm performance and the competitive advantages. Data was collected from the construction and engineering companies in South Korea by using survey questionnaire, and analyzed for empirical tests by using statistical methods such as structural equation modelling and path analysis. The results showed that the organizational resources, if they had the VRIN characteristics, would have positive impacts on creating the dynamic capabilities for project organization. In turn, the dynamic capabilities of a project organization would have impacts on improving business performance and creating competitive advantages. Also, it was found that the organizational resources may have direct impact on business performance and competitive advantages. The academic contribution of this study is that it attempts to integrate resource based view and the dynamic capability theory about creating competitive advantages for project based organization. This study also provided practical implications to the companies in construction industry by showing how to use organizational resources strategically to create competitive advantages.
Volatility in the stock market returns is a measure of investment risk. It plays a central role in portfolio optimization, asset pricing and risk management as well as most theoretical financial models. Engle(1982) presented a pioneering paper on the stock market volatility that explains the time-variant characteristics embedded in the stock market return volatility. His model, Autoregressive Conditional Heteroscedasticity (ARCH), was generalized by Bollerslev(1986) as GARCH models. Empirical studies have shown that GARCH models describes well the fat-tailed return distributions and volatility clustering phenomenon appearing in stock prices. The parameters of the GARCH models are generally estimated by the maximum likelihood estimation (MLE) based on the standard normal density. But, since 1987 Black Monday, the stock market prices have become very complex and shown a lot of noisy terms. Recent studies start to apply artificial intelligent approach in estimating the GARCH parameters as a substitute for the MLE. The paper presents SVR-based GARCH process and compares with MLE-based GARCH process to estimate the parameters of GARCH models which are known to well forecast stock market volatility. Kernel functions used in SVR estimation process are linear, polynomial and radial. We analyzed the suggested models with KOSPI 200 Index. This index is constituted by 200 blue chip stocks listed in the Korea Exchange. We sampled KOSPI 200 daily closing values from 2010 to 2015. Sample observations are 1487 days. We used 1187 days to train the suggested GARCH models and the remaining 300 days were used as testing data. First, symmetric and asymmetric GARCH models are estimated by MLE. We forecasted KOSPI 200 Index return volatility and the statistical metric MSE shows better results for the asymmetric GARCH models such as E-GARCH or GJR-GARCH. This is consistent with the documented non-normal return distribution characteristics with fat-tail and leptokurtosis. Compared with MLE estimation process, SVR-based GARCH models outperform the MLE methodology in KOSPI 200 Index return volatility forecasting. Polynomial kernel function shows exceptionally lower forecasting accuracy. We suggested Intelligent Volatility Trading System (IVTS) that utilizes the forecasted volatility results. IVTS entry rules are as follows. If forecasted tomorrow volatility will increase then buy volatility today. If forecasted tomorrow volatility will decrease then sell volatility today. If forecasted volatility direction does not change we hold the existing buy or sell positions. IVTS is assumed to buy and sell historical volatility values. This is somewhat unreal because we cannot trade historical volatility values themselves. But our simulation results are meaningful since the Korea Exchange introduced volatility futures contract that traders can trade since November 2014. The trading systems with SVR-based GARCH models show higher returns than MLE-based GARCH in the testing period. And trading profitable percentages of MLE-based GARCH IVTS models range from 47.5% to 50.0%, trading profitable percentages of SVR-based GARCH IVTS models range from 51.8% to 59.7%. MLE-based symmetric S-GARCH shows +150.2% return and SVR-based symmetric S-GARCH shows +526.4% return. MLE-based asymmetric E-GARCH shows -72% return and SVR-based asymmetric E-GARCH shows +245.6% return. MLE-based asymmetric GJR-GARCH shows -98.7% return and SVR-based asymmetric GJR-GARCH shows +126.3% return. Linear kernel function shows higher trading returns than radial kernel function. Best performance of SVR-based IVTS is +526.4% and that of MLE-based IVTS is +150.2%. SVR-based GARCH IVTS shows higher trading frequency. This study has some limitations. Our models are solely based on SVR. Other artificial intelligence models are needed to search for better performance. We do not consider costs incurred in the trading process including brokerage commissions and slippage costs. IVTS trading performance is unreal since we use historical volatility values as trading objects. The exact forecasting of stock market volatility is essential in the real trading as well as asset pricing models. Further studies on other machine learning-based GARCH models can give better information for the stock market investors.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.