• Title/Summary/Keyword: Portal news

Search Result 103, Processing Time 0.029 seconds

Assessment of the Forecasting Studies on 12 Traditional Korean Medicine Policy Realization (12개 미래 예측 한의약 정책 과제의 실현 평가 연구)

  • Park, Ju-Young;Shin, Hyeun-Kyoo
    • Journal of Society of Preventive Korean Medicine
    • /
    • v.17 no.1
    • /
    • pp.65-76
    • /
    • 2013
  • Objectives : Aim of this study is to contribute to establishment of the Traditional Korean Medicine (TKM) policies in the future. Final assessment for 12 of the forecasting projects was carried out on the TKM policies that deduced by professionals in 1996 whether or not to realize in 2013. Methods : We investigated governmental and private research projects, reports and papers, and laws and systems on the forecasting projects. We reviewed them through the Traditional Korean Medicine Information Portal OASIS (http://oasis.kiom.re.kr), Korean studies Information Service System (KISS) (http://kiss.kstudy.com/) and DBpia (http://www.dbpia.co.kr/), Akomnews(http://www.akomnews.com/), THE MINJOK MEDICINE NEWS(http://www.mjmedi.com/), Ministry of Government Legislation(http://www.law.go.kr/). Results : Of the 12 forecasting projects, five were judged as 'realization', four were as 'partial realization' and three were as 'un-realization', The realization rate was 75.0%. Three un-realized projects included the TKM insurance coverage for various herbal medicines, leadership secure on medical technicians and commercialization of the TKM managing system on senior medicare policy. Realization of the future forecasting TKM policy projects was decided depending on conditions such as the importance, domestic capability levels, principal agents, methods and restrains. Conclusions : Continuous studies and new developed forecasting projects for the TKM policies will be required to realize the projects in the future.

Analysis on Mobile Content Services of the Domestic Media Companies (국내 미디어 기업의 모바일 콘텐츠 서비스 사례 분석)

  • Park, Joo-Yeun;Chon, Bum-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.1
    • /
    • pp.160-169
    • /
    • 2010
  • The mobile internet service market is growing very rapidly in Korea. This study outlines the current state of mobile internet services and analyzes the mobile contents types of media companies, especially newspapers, broadcasters and internet portal firms. As a result of this study, media companies provide generally different types of news and information for free and they are eager to develop the new mobile business models to maintain their power in new media. But mobile content distribution is still in the early stages due to the lack of clear business models. To satisfy the consumer's needs and to maintain the competitive advantages, the media companies should develop new business models and cooperate with other market participants to reduce the barriers in the mobile internet service market.

Semantic Network Analysis about Comments on Internet Articles about Nurse Workplace Bullying (간호사 괴롭힘 관련 인터넷 포털 기사에 대한 댓글의 의미연결망 분석)

  • Kim, Chang Hee;Moon, Seong Mi
    • Journal of Korean Clinical Nursing Research
    • /
    • v.25 no.3
    • /
    • pp.209-220
    • /
    • 2019
  • Purpose: A significant amount of public opinion about nurse bullying is expressed on the internet. The purpose of this study was to analyze the linkage structures among words extracted from comments on internet articles related to nurse workplace bullying using semantic network analysis. Methods: From February 2018 to April 2019, comments made on news articles posted to the Daum and Naver web portal containing keywords such as "nurse", "Taeum", and "bullying" were collected using a web crawler written in Python. A morphological analysis performed with Open Korean Text in KoNLPy generated 54 major nodes. The frequencies, eigenvector centralities, and betweenness centralities of the 54 nodes were calculated and semantic networks were visualized using the UCINET and NetDraw programs. Convergence of iterated correlations (CONCOR) analysis was performed to identify structural equivalence. Results: This paper presents results about March 2018 and January 2019 because these months had highest number of articles. Of the 54 major nodes, "nurse", "hospital", "patient", and "physician" were the most frequent and had the highest eigenvector and betweenness centralities. The CONCOR analysis identified work environment, nurse, gender, and military clusters. Conclusion: This study structurally explored public opinion about nurse bullying through semantic network analysis. It is suggested that various studies on nursing phenomena will be conducted using social network analysis.

Analyzing ESG practices of fashion businesses in Korea (국내 패션기업의 ESG 실행 현황 분석)

  • Park, Kyungae;Heo, Soonim
    • The Research Journal of the Costume Culture
    • /
    • v.30 no.1
    • /
    • pp.102-120
    • /
    • 2022
  • With the growing importance of ESG as a must-have business strategy, this study attempted to analyze the current state of ESG practices in the Korean fashion businesses. The ESG cases of fashion business were collected from news articles searched on the largest Korean internet portal by November 2021 from October 2020 when the number of articles began to increase meaningfully. Three hundred ninety one ESG cases of 112 fashion manufacturing brands and 332 ESG cases of 49 retail brands were analyzed. Casual and outdoor/sportswear brands among fashion manufacturers were most active in ESG practices, and various online and offline retailers were practicing ESG. Approximately one-third of the fashion brands were positioned as eco-friendly concept. While environmental practices were the most practiced ESG, governance was the least practiced. Among environmental practices, fashion manufacturing businesses were most active in eco-friendly product development, while retail businesses were in eco-friendly campaign-event-service and eco-friendly packaging. The most active social practice was the contribution to communities, followed by retail businesses' sharing growth with partner businesses. Governance practices were focused on the structure and operation of the board. Various ESG collaborations with various partners were also observed. The research result is meaningful verifying and diagnosing the ESG practices of the Korean fashion businesses.

Stock Price Prediction by Utilizing Category Neutral Terms: Text Mining Approach (카테고리 중립 단어 활용을 통한 주가 예측 방안: 텍스트 마이닝 활용)

  • Lee, Minsik;Lee, Hong Joo
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.2
    • /
    • pp.123-138
    • /
    • 2017
  • Since the stock market is driven by the expectation of traders, studies have been conducted to predict stock price movements through analysis of various sources of text data. In order to predict stock price movements, research has been conducted not only on the relationship between text data and fluctuations in stock prices, but also on the trading stocks based on news articles and social media responses. Studies that predict the movements of stock prices have also applied classification algorithms with constructing term-document matrix in the same way as other text mining approaches. Because the document contains a lot of words, it is better to select words that contribute more for building a term-document matrix. Based on the frequency of words, words that show too little frequency or importance are removed. It also selects words according to their contribution by measuring the degree to which a word contributes to correctly classifying a document. The basic idea of constructing a term-document matrix was to collect all the documents to be analyzed and to select and use the words that have an influence on the classification. In this study, we analyze the documents for each individual item and select the words that are irrelevant for all categories as neutral words. We extract the words around the selected neutral word and use it to generate the term-document matrix. The neutral word itself starts with the idea that the stock movement is less related to the existence of the neutral words, and that the surrounding words of the neutral word are more likely to affect the stock price movements. And apply it to the algorithm that classifies the stock price fluctuations with the generated term-document matrix. In this study, we firstly removed stop words and selected neutral words for each stock. And we used a method to exclude words that are included in news articles for other stocks among the selected words. Through the online news portal, we collected four months of news articles on the top 10 market cap stocks. We split the news articles into 3 month news data as training data and apply the remaining one month news articles to the model to predict the stock price movements of the next day. We used SVM, Boosting and Random Forest for building models and predicting the movements of stock prices. The stock market opened for four months (2016/02/01 ~ 2016/05/31) for a total of 80 days, using the initial 60 days as a training set and the remaining 20 days as a test set. The proposed word - based algorithm in this study showed better classification performance than the word selection method based on sparsity. This study predicted stock price volatility by collecting and analyzing news articles of the top 10 stocks in market cap. We used the term - document matrix based classification model to estimate the stock price fluctuations and compared the performance of the existing sparse - based word extraction method and the suggested method of removing words from the term - document matrix. The suggested method differs from the word extraction method in that it uses not only the news articles for the corresponding stock but also other news items to determine the words to extract. In other words, it removed not only the words that appeared in all the increase and decrease but also the words that appeared common in the news for other stocks. When the prediction accuracy was compared, the suggested method showed higher accuracy. The limitation of this study is that the stock price prediction was set up to classify the rise and fall, and the experiment was conducted only for the top ten stocks. The 10 stocks used in the experiment do not represent the entire stock market. In addition, it is difficult to show the investment performance because stock price fluctuation and profit rate may be different. Therefore, it is necessary to study the research using more stocks and the yield prediction through trading simulation.

Trend Analysis of Sports for All-Related Issues in Early Stage of COVID-19 Using Topic Modeling (토픽 모델링을 활용한 코로나19 초기 생활체육 이슈 분석)

  • Chung, Yunkil;Seo, Sumin;Kang, Hyunmin
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.3
    • /
    • pp.57-79
    • /
    • 2022
  • COVID-19, which started in December 2019, has had a great impact on our lives in general, including politics, economy, society, and culture, and activities in sports and arts have also been significantly reduced. In the case of sports, sports for all fields in which ordinary citizens participate were particularly affected, and cases of infection in places closely related to people's lives, such as gyms, table tennis, and badminton clubs, also amplified the social fear of the spread of COVID-19. Therefore, in this study, we analyzed news articles related to sports for all at the time when COVID-19 was first spread, and investigated what issues were emerging and being discussed in the sports for all field under the COVID-19 situation. Specifically, we collected news articles dealt with sports for all issues under the COVID-19 situation from Korea's leading portal news sites and identified key sports for all issues by performing topic modeling on these articles. Through the analysis, we found meaningful issues such as COVID-19 outbreak in sports facilities and support for sports activities. In addition, through wordcloud analysis of these major issues, we visually understood the issues and identified the changes in these issues over time.

The Political Recognition Surrounding Candlelight Rally and Taegeukgi Rally: A Big Data Analytics on Online News Comments (촛불 집회와 태극기 집회를 둘러싼 정국 인식: 온라인 뉴스 댓글에 대한 빅데이터 분석)

  • Kim, ChanWoo;Jung, Byungkee
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.8 no.6
    • /
    • pp.875-885
    • /
    • 2018
  • This study analyzed the major issues of the Candlelight Rally and Taegukgi Rally registered in news comments of the politics section of the portal site from October 24, 2016 to March 19, 2017. We examined the political recognition of the two rallies with the Named Entity Recognition. The main analytical items are the responsibility for impeachment, the subject and method of settlement, and other major issues. As a result of the analysis, the comments of the Candlelight Rally focused on the impeachment support and the legal penalties of the regime ministers, and insisted on resolving the political situation through the next election after impeachment. The comments of the Taegukgi Rally focused on the rejection of the impeachment to maintain the regime and insisted on rejecting the impeachment of the Constitutional Court. The conflicts between the group that supported Candlelight Rallis and the group that supported Taegukgi rallies are predicted to last at least for the time being (Park Geun-hye's trial period) after the presidential election. After the impeachment of the President and replacement of the regime this conflict will develop into the confrontation between the pursuit of liquidation and new politics and the attempt to influence the trial of Park Geun-hye. Therefore, the efforts to integrate society in the aftermath are necessary.

Consumers Perceptions on Monosodium L-glutamate in Social Media (소셜미디어 분석을 통한 소비자들의 L-글루타민산나트륨에 대한 인식 조사)

  • Lee, Sooyeon;Lee, Wonsung;Moon, Il-Chul;Kwon, Hoonjeong
    • Journal of Food Hygiene and Safety
    • /
    • v.31 no.3
    • /
    • pp.153-166
    • /
    • 2016
  • The purpose of this study was to investigate consumers' perceptions on monosodium L-glutamate (MSG) in social media. Data were collected from Naver blogs and Naver web communities (Korean representative portal web-site), and media reports including comment sections on a Yonhap news website (Korean largest news agency). The results from Naver blogs and Naver web communities showed that it was primarily mentioned MSG-use restaurant reviews, 'MSG-no added' products, its safety, and methods of reducing MSG in food. When TV shows on current affairs, newspaper, or TV news reported uses and side effects of MSG, search volume for MSG has increased in both PC and mobile search engines. Search volume has increased especially when TV shows on current affairs reported it. There are more periods with increased search volume for Mobile than PC. Also, it was mainly commented about safety of MSG, criticism of low-quality foods, abuse of MSG, and distrust of government below the news on the Yonhap news site. The label of MSG-no added products in market emphasized "MSG-free" even though it is allocated as an acceptable daily intake (ADI) not-specified by the Joint FAO/WHO Expert Committee on Food Additives (JECFA). When consumers search for MSG (monosodium L-glutamate) or purchase food on market, they might perceive that 'MSG-no added' products are better. Competent authorities, offices of education and local government provide guidelines based on no added MSG principle and these policies might affect consumers' perceptions. TV program or news program could be a powerful and effective consumer communication channel about MSG through Mobile rather than PC. Therefore media including TV should report item on monosodium L-glutamate with responsibility and information based on scientific background for consumers to get reliable information.

Influence analysis of Internet buzz to corporate performance : Individual stock price prediction using sentiment analysis of online news (온라인 언급이 기업 성과에 미치는 영향 분석 : 뉴스 감성분석을 통한 기업별 주가 예측)

  • Jeong, Ji Seon;Kim, Dong Sung;Kim, Jong Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.4
    • /
    • pp.37-51
    • /
    • 2015
  • Due to the development of internet technology and the rapid increase of internet data, various studies are actively conducted on how to use and analyze internet data for various purposes. In particular, in recent years, a number of studies have been performed on the applications of text mining techniques in order to overcome the limitations of the current application of structured data. Especially, there are various studies on sentimental analysis to score opinions based on the distribution of polarity such as positivity or negativity of vocabularies or sentences of the texts in documents. As a part of such studies, this study tries to predict ups and downs of stock prices of companies by performing sentimental analysis on news contexts of the particular companies in the Internet. A variety of news on companies is produced online by different economic agents, and it is diffused quickly and accessed easily in the Internet. So, based on inefficient market hypothesis, we can expect that news information of an individual company can be used to predict the fluctuations of stock prices of the company if we apply proper data analysis techniques. However, as the areas of corporate management activity are different, an analysis considering characteristics of each company is required in the analysis of text data based on machine-learning. In addition, since the news including positive or negative information on certain companies have various impacts on other companies or industry fields, an analysis for the prediction of the stock price of each company is necessary. Therefore, this study attempted to predict changes in the stock prices of the individual companies that applied a sentimental analysis of the online news data. Accordingly, this study chose top company in KOSPI 200 as the subjects of the analysis, and collected and analyzed online news data by each company produced for two years on a representative domestic search portal service, Naver. In addition, considering the differences in the meanings of vocabularies for each of the certain economic subjects, it aims to improve performance by building up a lexicon for each individual company and applying that to an analysis. As a result of the analysis, the accuracy of the prediction by each company are different, and the prediction accurate rate turned out to be 56% on average. Comparing the accuracy of the prediction of stock prices on industry sectors, 'energy/chemical', 'consumer goods for living' and 'consumer discretionary' showed a relatively higher accuracy of the prediction of stock prices than other industries, while it was found that the sectors such as 'information technology' and 'shipbuilding/transportation' industry had lower accuracy of prediction. The number of the representative companies in each industry collected was five each, so it is somewhat difficult to generalize, but it could be confirmed that there was a difference in the accuracy of the prediction of stock prices depending on industry sectors. In addition, at the individual company level, the companies such as 'Kangwon Land', 'KT & G' and 'SK Innovation' showed a relatively higher prediction accuracy as compared to other companies, while it showed that the companies such as 'Young Poong', 'LG', 'Samsung Life Insurance', and 'Doosan' had a low prediction accuracy of less than 50%. In this paper, we performed an analysis of the share price performance relative to the prediction of individual companies through the vocabulary of pre-built company to take advantage of the online news information. In this paper, we aim to improve performance of the stock prices prediction, applying online news information, through the stock price prediction of individual companies. Based on this, in the future, it will be possible to find ways to increase the stock price prediction accuracy by complementing the problem of unnecessary words that are added to the sentiment dictionary.

Comparison of Personalized Ad Methods on the Internet and Smart Phone Platforms (인터넷과 스마트폰 환경에서의 개인화된 광고 방법론의 비교 분석)

  • Kim, Jun San;Lee, Jae Kyu
    • Asia pacific journal of information systems
    • /
    • v.22 no.4
    • /
    • pp.125-149
    • /
    • 2012
  • As the smart phone is propagating rapidly, the importance of mobile advertisement has also grown. One of the main characteristics of the Internet and smart phone advertising is that they can deliver personalized advertisements to each customer. The smart phone enables the identification of additional personalized information such as the customer's location and the accessibility to the site at any place any time. As the Internet platform becomes richer, firms that offer the ad services via the wired PC Internet and wireless smart phone are seeking various types of personalized ads. However, their service platform and Information and Communication Technology (ICT) platform should be suitable to the characteristics of personalized ads. This research explores various types of personalized ad methods and evaluates their adequacy encompassing four types of ad service platforms (such as search portal, news portal, e-mall servers, and SNS) and two types of ICT platforms (PC Internet and smart phone). To this end, we classified the personalized ads into seven types: three basic types and four composite types. The basic types of ad methods are identified by considering the current activity that the customer is engaged, the individual profile and log history, and the customer's current location or planning location. Four composite types of ad methods are constructed as the combination of these basic types. For those types of ad methods, we evaluate whether each ad method adequately maps with four types of ad service platforms and two types of ICT platforms. We proposed a metric of evaluation and demonstrated the concept with illustrative numbers. Specifically, we analyze and compare personalized ad methods in three ways. Firstly, the possibility of implementing a personalized ad method on the platform is analyzed to confirm the degree of suitability. Secondly, the value of personalized ad method is analyzed based on the customer accessibility. Lastly, expected effectiveness for each personalized ad method is computed by multiplying the possibility and the value. Through this kind of analysis, the ad service providers as well as advertising companies can evaluate what kinds of personalized ad methods and platforms are possible and suitable to maximize their ad effectiveness on the Internet and smart phone platforms.

  • PDF