• Title/Summary/Keyword: Portable sensor

Search Result 299, Processing Time 0.024 seconds

Investigation of Machined-Surface Condition and Machining Deformation in High-Speed Milling of Thin-Wall Aluminum 7075-T651 (알루미늄 합금(Al7075-T651)의 얇은 벽 고속밀링 가공 시 가공표면 상태와 가공변형 특성)

  • Koo, Joon-Young;Hwang, Moon-Chang;Lee, Jong-Hwan;Kim, Jeong-Suk
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.3
    • /
    • pp.211-216
    • /
    • 2016
  • Al alloys are useful materials having high specific strength and are used in machining of parts having thin-walled structures for weight reduction in aircraft, automobiles, and portable devices. In machining of thin-walled structures, it is difficult to maintain dimensional accuracy because machining deformation occurs because of cutting forces and heat in the cutting zone. Thus, cutting conditions and methods need to be investigated and cutting signals need to be analyzed to diagnose and minimize machining deformation and thereby enhance machining quality. In this study, an investigation on cutting conditions to minimize machining deformation and an analysis on characteristics of cutting signals when machining deformation occurs are conducted. Cutting signals for the process are acquired by using an accelerometer and acoustic emission (AE) sensor. Signal characteristics according to the cutting conditions and the relation between machining deformation and cutting signals are analyzed.

Fuzzy Simulation of a Multi-electronic Acupuncture System and Clip-type Pulsimeter Equipped with a Magnetic Sensing Hall Device

  • Hong, You-Sik;Rhee, Jin-Kyu;Kim, Han-Kyu;Son, Il-Ho;Yoon, Woo-Sung;Lee, Nam-Kyu;Park, Do-Young;Kim, Keun-Ho;Kim, Yong-Jin;Khajidmaa, P.;Lee, Sang-Suk
    • Journal of Magnetics
    • /
    • v.19 no.3
    • /
    • pp.255-260
    • /
    • 2014
  • A portable clip-type pulsimeter equipped with a magnetic sensing Hall device has been developed to raise the accuracy of oriental disease diagnosis and therapy by convergence of magnetism and oriental medicine. To improve accuracy and reliability of conventional pulsimeter due to subjective analysis of the pulse wave and measuring position dependency of the arterial pulse sensor, the fuzzy algorithm was applied to analyze the strong- and weak-pulse wave symptom. Optimal time for electronic acupuncture was calculated using fuzzy rules and interference were drawn from objective data in view of pre-treatment. Moreover, the electrical characteristics of the pain parts that respond to acupuncture point were applied in view of post-treatment to propose the scientific pulse wave algorithm and simulation experiment.

Real Time ECG Monitoring Through a Wearable Smart T-shirt

  • Mathias, Dakurah Naangmenkpeong;Kim, Sung-Il;Park, Jae-Soon;Joung, Yeun-Ho
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.1
    • /
    • pp.16-19
    • /
    • 2015
  • A wearable sensing ECG T-shirt for ubiquitous vital signs sensing is proposed. The sensor system consists of a signal processing board and capacitive sensing electrodes which together enable measurement of an electrocardiogram (ECG) on the human chest with minimal discomfort. The capacitive sensing method was employed to prevent direct ECG measurement on the skin and also to provide maximum convenience to the user. Also, low power integrated circuits (ICs) and passive electrodes were employed in this research to reduce the power consumption of the entire system. Small flexible electrodes were placed into cotton pockets and affixed to the interior of a worn tight NIKE Pro combat T-shirt. Appropriate signal conditioning and processing were implemented to remove motion artifacts. The entire system was portable and consumed low power compared to conventional ECG devices. The ECG signal obtained from a 24 yr. old male was comparable to that of an ECG simulator.

The Concentration Measurements of Toxic Exhaust Gas by Tunable Diode Laser Absorption Spectroscopy System (TDLAS 시스템을 이용한 유해 배기가스의 농도 계측)

  • Cha, Hak-Joo;Kim, Min-Soo;Shin, Myung-Chul;Kim, Se-Won;Chun, Kwang-Min
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.222-227
    • /
    • 2003
  • Recent advances in room-temperature, visible and near-IR diode laser sources for telecommunication, optical data storage applications are enabling combustion diagnostics system based on diode laser absorption spectroscopy. In contrast to some traditional sampling-based gas-sensing instruments, tunable diode laser absorption spectroscopy system is advantageous because of their non-invasive nature, high sensitivity, fast response time and real-time measurement capability. So, combined with fiber-optics and high sensitive detection strategies, compact and portable sensor system arc now appearing for a variety of applications. The objective of this research is to take advantage of distributed feed-back diode laser and measure the $CO_{2}$ concentration (by using direct absorption and wavelength modulation spectroscopy methods). In addition to survey spectra of $CO_{2}$ bands and spectroscopic parameters between 1565 and 1579 run were computed at temperatures between 296 and 1200 K (by using HITRAN 2000 database). It experimentally found out that the features of direct absorption and wavelength modulation spectroscopy methods.

  • PDF

Prediction and Evaluation of Power Output for Energy Scavengers using the Piezoelectric Material (압전 재료를 이용한 에너지 변환 시스템의 출력 파워 예측 및 평가)

  • Oh, Jae-Eung;Kim, Seong-Hyeon;Sim, Hyoun-Jin;Lee, Jung-Yoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.827-830
    • /
    • 2006
  • With recent advanced in portable electric devices, wireless sensor, MEMS and bio-Mechanics device, the new typed power supply, not conventional battery but self-powered energy source is needed. Particularly, the system that harvests from their environments are interests for use in self powered devices. For very low powered devices, environmental energy may be enough to use power source. In the generality of cases, these energy harvesting systems are used in the piezoelectric materials as mechanisms to convert mechanical vibration energy into electric energy. Through the piezoelectric materials, the ambient vibration energy could be used to prolong the power supply or in the ideal case provide endless energy f9r the devices. Therefore, the piezoelectric power harvesting cantilever beam is developed. Also, the output voltage and power are predicted in this study. We also discuss the developing system of the piezoelectric energy scavenger. An experimental verification of the model is also performed to ensure its accuracy.

  • PDF

Development of a Portable Gait Phase Detection System for Patients with Gait Disorders

  • Ahn Seung Chan;Hwang Sung Jae;Kang Sung Jae;Kim Young Ho
    • Journal of Biomedical Engineering Research
    • /
    • v.26 no.3
    • /
    • pp.145-150
    • /
    • 2005
  • A new gait detection system using both FSR (force sensing resistor) sensors and a gyrosensor was developed to detect various gait patterns. FSR sensors were put in self-designed shoe insoles and a gyrosensor was attached to the heel of a shoe. An algorithm was also developed to determine eight different gait transitions during four gait phases: heel-strike, foot-flat, heel-off and swing. The developed system was evaluated from nine heathy mans and twelve hemiplegic patients. Healthy volunteers were asked to walk in various gait patterns: level walking, fore-foot walking and stair walking. Only the level walking was performed in hemiplegic patients. The gait detection system was compared with a optical motion analysis system and the outputs of the FSR sensors. In healthy subjects, the developed system detected successfully more than $99\%$ for both level walking and fore-foot walking. For stair walking, the successful detection rate of the system was above$97\%$. In hemiplegic patients, the developed system detected approximately 98% of gait transitions. The developed gait phase detection system will be helpful not only to determine pathological gait phases but also to apply prosthetics, orthotics and functional electrical stimulation for patients with various gait disorders.

A Study on Evolution Strategy of the Next Generation Mobile Terminals (차세대 이동단말의 발전 전략에 대한 연구)

  • Bang Kee-Chun
    • Journal of Digital Contents Society
    • /
    • v.6 no.2
    • /
    • pp.131-135
    • /
    • 2005
  • Nowadays, the demand for the wireless technology has gradually increased to support the services of high speed wired internet and also the interest of a mobile terminal convergence has increased. In the next generation, the mobile terminal could merge with the celluar phone, wireless LAN, portable internet, digital multimedia brodcasting, mobile game and sensor(smart-tag and biometrics) through the unified single user interface. Moreover, the system is supported to multi-mode at difference networks, which have variable functions and high performance for available service. Inthis paper, we investigate the minimum requirements and the core technologies of the next generation mobile terminals.

  • PDF

A Study on Graylevel Image Scanning System Realization Using CIS (CIS를 이용한 그레이레벨 이미지 스케닝시스템 구현에 관한 연구)

  • 김영빈;김윤호;류광렬
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2002.05a
    • /
    • pp.581-584
    • /
    • 2002
  • The graylevel image scanning system realization and design using CIS(Contact Image Scanning)be amenable to recognize a papers, OMR and OCR sheet is proposed. The design technique is used CIS scanning sensor in fixing step motor and is optimized with DSP processor for image processing., and transfer input image data par line in feeding a step unit to PC on the USB interfacer. This system is portable and A4 size scanning and keeps image scan processing speed 300mm/sec The recognition percentage has 98% on the OCR and bar codes.

  • PDF

Implementation of Patient Monitoring System based on Mobile Healthcare (모바일 헬스케어 기반의 환자 모니터링 시스템 구현)

  • Kim, Kyoung-Mok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.12
    • /
    • pp.1-10
    • /
    • 2012
  • In this paper, we propose an patient monitoring system which is suitable for mobile healthcare system. The mobile healthcare system is using portable device such as smartphone and it consists of small computing device. The mobile healthcare system is carry out same performance with desktop computer. We designed medical message structure based on TinyOS to transmit patient's biometric data on the smartphone of medical team, patient and family over the mobile carrier environment, and ported successfully in HBE-Ubi-ZigbeX using NesC. And We confirmed reliable transmission of biometric data on the smartphone by implementing the Android OS based patient information monitoring application to check the status of patient for medical team, patient and family.

A Development Of The Portable Spirometry System Of Pressure Method Using Static Pressure In Pitot Tube (개구관에서의 정체압을 이용한 차동 압력 방식의 휴대형 호흡측정 시스템 개발)

  • 이종수;신창민;김영길
    • Journal of Biomedical Engineering Research
    • /
    • v.22 no.6
    • /
    • pp.479-486
    • /
    • 2001
  • Spirometer is a medical equipment which diagnoses respiratory function by measuring 9as volume across Patient's lunes through airway. Because a little overdose of anesthesia medicine can take away Patient's life in the ventilator for a surgical operation. an exact measurement of respiring volume is very important. This Paper Presented an exact flow volume calculation method from factors having an influence on measurement and introduced a spirometry system for an anesthesia ventilato. This system, using differential Pressure sensor measured flow by mutual relation with Pressure. temperature. gas density and linearization from the 2nd order characteristics of differential pressure with flow.

  • PDF