• Title/Summary/Keyword: Portable projector tracking

Search Result 2, Processing Time 0.019 seconds

Interactive Projection by Closed-loop based Position Tracking of Projected Area for Portable Projector (이동 프로젝터 투사영역의 폐회로 기반 위치추적에 의한 인터랙티브 투사)

  • Park, Ji-Young;Rhee, Seon-Min;Kim, Myoung-Hee
    • Journal of KIISE:Software and Applications
    • /
    • v.37 no.1
    • /
    • pp.29-38
    • /
    • 2010
  • We propose an interactive projection technique to display details of a large image in a high resolution and brightness by tracking a portable projector. A closed-loop based tracking method is presented to update the projected image while a user changes the position of the detail area by moving the portable projector. A marker is embedded in the large image to indicate the position to be occupied by the detail image projected by the portable projector. The marker is extracted in sequential images acquired by a camera attached to the portable projector. The marker position in the large display image is updated under a constraint that the center positions of marker and camera frame coincide in every camera frame. The image and projective transformation for warping are calculated using the marker position and shape in the camera frame. The marker's four corner points are determined by a four-step segmentation process which consists of camera image preprocessing based on HSI, edge extraction by Hough transformation, quadrangle test, and cross-ratio test. The interactive projection system implemented by the proposed method performs at about 24fps. In the user study, the overall feedback about the system usability was very high.

A method for image-based shadow interaction with virtual objects

  • Ha, Hyunwoo;Ko, Kwanghee
    • Journal of Computational Design and Engineering
    • /
    • v.2 no.1
    • /
    • pp.26-37
    • /
    • 2015
  • A lot of researchers have been investigating interactive portable projection systems such as a mini-projector. In addition, in exhibition halls and museums, there is a trend toward using interactive projection systems to make viewing more exciting and impressive. They can also be applied in the field of art, for example, in creating shadow plays. The key idea of the interactive portable projection systems is to recognize the user's gesture in real-time. In this paper, a vision-based shadow gesture recognition method is proposed for interactive projection systems. The gesture recognition method is based on the screen image obtained by a single web camera. The method separates only the shadow area by combining the binary image with an input image using a learning algorithm that isolates the background from the input image. The region of interest is recognized with labeling the shadow of separated regions, and then hand shadows are isolated using the defect, convex hull, and moment of each region. To distinguish hand gestures, Hu's invariant moment method is used. An optical flow algorithm is used for tracking the fingertip. Using this method, a few interactive applications are developed, which are presented in this paper.