• Title/Summary/Keyword: Portable imaging

Search Result 76, Processing Time 0.024 seconds

FMD response cow hooves and temperature detection algorithm using a thermal imaging camera (열화상 카메라를 이용한 구제역 대응 소 발굽 온도 검출 알고리즘 개발)

  • Yu, Chan-Ju;Kim, Jeong-Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.9
    • /
    • pp.292-301
    • /
    • 2016
  • Because damages arising from the occurrence of foot-and-mouth disease (FMD) are very great, it is essential to make a preemptive diagnosis to cope with it in order to minimize those damages. The main symptoms of foot-and-mouth disease are body temperature increase, loss of appetite, formation of blisters in the mouth, on hooves and breasts, etc. in a cow or a bull, among which the body temperature check is the easiest and quickest way to detect the disease. In this paper, an algorithm to detect FMD from the hooves of cattle was developed and implemented for preemptive coping with foot-and-mouth disease, and a hoof check test is conducted after the installation of a high-resolution camera module, a thermo-graphic camera, and a temperature/humidity module in the cattle shed. Through the algorithm and system developed in this study, it is possible to cope with an early-stage situation in which cattle are suspected as suffering from foot-and-mouth disease, creating an optimized growth environment for cattle. In particular, in this study, the system to cope with FMD does not use a portable thermo-graphic camera, but a fixed camera attached to the cattle shed. It does not need additional personnel, has a function to measure the temperature of cattle hooves automatically through an image algorithm, and includes an automated alarm for a smart phone. This system enables the prediction of a possible occurrence of foot-and-mouth disease on a real-time basis, and also enables initial-stage disinfection to be performed to cope with the disease without needing extra personnel.

A Study on the Performance Evaluation of Portable Radiation Shielding Apparatus (이동형 방사선 차폐장치의 성능평가에 관한 연구)

  • Koo, Bon-Yeoul;Han, Sang-Hyun
    • Journal of radiological science and technology
    • /
    • v.41 no.4
    • /
    • pp.289-295
    • /
    • 2018
  • When using a mobile X-ray unit, primary radiation creates medical images and secondary radiation scatters in many directions, which reduces image quality and causes exposure to patients, care givers and medical personnel. The purpose of this study was to develop a radiation shielding system for effectively shielding secondary radiation and evaluate its effectiveness. Using a mobile X-ray unit, spatial dose according to presence of human equivalent phantom and spatial dose using the developed shielding device were measured, and the phantom at 80 cm equidistance from center of X-ray was compared with spatial dose according to use of a shield. Measurements were taken at intervals of 10 cm every $30^{\circ}$ from the head direction($-90^{\circ}$) to the body direction($+90^{\circ}$). In the spatial dose measurement with and without the phantom, when the human equivalent Phantom was used, the spatial dose was increased by 40% in all directions from 40 cm to 100 cm from the central X-ray, and about 88% of the space dose was reduced when using the developed shields with the phantom. The equidistance dose at 80 cm from the central X-ray was increased by 39% from $5.1{\pm}0.26{\mu}Gy$ to $7.1{\pm}0.15{\mu}Gy$ when the human equivalent phantom was used, and when phantom was used and shielding was used, the spatial dose was reduced by about 90% from $7.1{\pm}0.15{\mu}Gy$ to $0.7{\pm}0.07{\mu}Gy$. The spatial dose of natural radiation was measured to be about $0.2{\pm}0.04{\mu}Gy$ when using the developed shielding with Phantom at a distance of 1 m or more. It is expected that by using the developed shielding system, it will be possible to effectively reduce secondary radiation dose received in all directions and to ensure safe imaging.

Detection of Iron Nanoparticles using Nuclear Magnetic Resonance Relaxometry and Inverse Laplace Transform

  • Kim, Seong Min
    • Journal of Biosystems Engineering
    • /
    • v.39 no.4
    • /
    • pp.345-351
    • /
    • 2014
  • Purpose: Rapid detection of bacteria is very important in agricultural and food industries to prevent many foodborne illnesses. The objective of this study was to develop a portable nuclear magnetic resonance (NMR)-based system to detect foodborne pathogens (E. coli). This study was focused on developing a method to detect low concentrations of magnetic nanoparticles using NMR techniques. Methods: NMR relaxometry was performed to examine the NMR properties of iron nanoparticle mixtures with different concentrations by using a 1 T permanent magnet magnetic resonance imaging system. Exponential curve fitting (ECF) and inverse Laplace transform (ILT) methods were used to estimate the NMR relaxation time constants, $T_1$ and $T_2$, of guar gum solutions with different iron nanoparticle concentrations (0, $10^{-3}$, $10^{-4}$, $10^{-5}$, $10^{-6}$, and $10^{-7}M$). Results: The ECF and ILT methods did not show much difference in these values. Analysis of the NMR relaxation data showed that the ILT method is comparable to the classical ECF method and is more sensitive to the presence of iron nanoparticles. This study also showed that the spin-spin relaxation time constants acquired by a Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence are more useful for determining the concentration of iron nanoparticle solutions comparwith the spin-lattice relaxation time constants acquired by an inversion recovery pulse sequence. Conclusions: We conclude that NMR relaxometry that utilizes CPMG pulse sequence and ILT analysis is more suitable for detecting foodborne pathogens bound to magnetic nanoparticles in agricultural and food products than using inversion recovery pulse sequence and ECF analysis.

Object Recognition Face Detection With 3D Imaging Parameters A Research on Measurement Technology (3D영상 객체인식을 통한 얼굴검출 파라미터 측정기술에 대한 연구)

  • Choi, Byung-Kwan;Moon, Nam-Mee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.10
    • /
    • pp.53-62
    • /
    • 2011
  • In this paper, high-tech IT Convergence, to the development of complex technology, special technology, video object recognition technology was considered only as a smart - phone technology with the development of personal portable terminal has been developed crossroads. Technology-based detection of 3D face recognition technology that recognizes objects detected through the intelligent video recognition technology has been evolving technologies based on image recognition, face detection technology with through the development speed is booming. In this paper, based on human face recognition technology to detect the object recognition image processing technology is applied through the face recognition technology applied to the IP camera is the party of the mouth, and allowed the ability to identify and apply the human face recognition, measurement techniques applied research is suggested. Study plan: 1) face model based face tracking technology was developed and applied 2) algorithm developed by PC-based measurement of human perception through the CPU load in the face value of their basic parameters can be tracked, and 3) bilateral distance and the angle of gaze can be tracked in real time, proved effective.

Assessment of endodontically treated teeth by using different radiographic methods: an ex vivo comparison between CBCT and other radiographic techniques

  • Demiralp, Kemal Ozgur;Kamburoglu, Kivanc;Gungor, Kahraman;Yuksel, Selcen;Demiralp, Gokcen;Ucok, Ozlem
    • Imaging Science in Dentistry
    • /
    • v.42 no.3
    • /
    • pp.129-137
    • /
    • 2012
  • Purpose: To compare different radiographic methods for assessing endodontically treated teeth. Materials and Methods: Root canal treatments were applied in 120 extracted mandibular teeth, which were divided into four groups: (1) ideal root canal treatment (60 teeth), (2) insufficient lateral condensation (20 teeth), (3) root canals filled short of the apex (20 teeth), (4) overfilled root canal treatment (20 teeth). The teeth were imaged using intraoral film, panoramic film, digital intraoral systems (CCD and PSP), CCD obtained with portable X-ray source, digital panoramic, and CBCT images obtained at 0.3 $mm^3$ and 0.2 $mm^3$ voxel size. Images were evaluated separately by three observers, twice. Kappa coefficients were calculated. The percentage of correct readings obtained from each modality was calculated and compared using a t-test (p<0.05). Results: The intra-observer kappa for each observer ranged between 0.327 and 0.849. The inter-observer kappa for each observer for both readings ranged between 0.312 and 0.749. For the ideal root canal treatment group, CBCT with 0.2 $mm^3$ voxel images revealed the best results. For insufficient lateral condensation, the best readings were found with periapical film followed by CCD and PSP. The assessment of teeth with root canals filled short of the apex showed the highest percentage of correct readings by CBCT and CCD. For the overfilled canal treatment group, PSP images and conventional periapical film radiographs had the best scores. Conclusion: CBCT was found to be successful in the assessment of teeth with ideal root canal treatment and teeth with canals filled short of the apex.

Efficient image-stitching using preprocessing for a super resolution image (전처리를 활용한 고해상도 영상을 위한 효율적인 영상 스티칭)

  • Bae, JoungEun;Yoo, Hoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.9
    • /
    • pp.1738-1743
    • /
    • 2017
  • This paper presents an efficient image stitching method using preprocessing in order to generate a super resolution image. Two-dimensional (2D) scanners are consistently used in various areas but they have limitations such as paper sizes and materials. To overcome these problem with low-cost, an efficient imaging stitching method is proposed for producing a super resolution panorama image. To scan a very large sized paper using mobile phones, a simple portable cradle which fixes height is employed producing an input image set. To improve matching performance, a preprocessing method is introduced before searching correspondences. Then alpha blending is applied to an input image set to produce a super resolution panorama image. The proposed method is faster and easier than the existing method which is employed by Open CV. Experiment results show that the proposed method is three times faster and performs better than the existing method.

Evaluation of 475 ℃ embrittlement in UNS S32750 super duplex stainless steel using four-point electric conductivity measurements

  • Gutierrez-Vargas, Gildardo;Ruiz, Alberto;Lopez-Morelos, Victor H.;Kim, Jin-Yeon;Gonzalez-Sanchez, Jorge;Medina-Flores, Ariosto
    • Nuclear Engineering and Technology
    • /
    • v.53 no.9
    • /
    • pp.2982-2989
    • /
    • 2021
  • One of the consequences of the 475 ℃ embrittlement of duplex stainless steels is the reduction of the resistance to localized corrosion. Therefore, the detection of this type of embrittlement before the material exhibits significant loss in toughness, and corrosion resistance is important to ensure the structural integrity of critical components under corrosion threats. In this research, conductivity measurements are performed using the alternating current potential drop (ACPD) technique with using a portable four-point probe as a nondestructive evaluation (NDE) method for detecting the embrittlement in a 2507 (UNS S32750) super duplex stainless steel (SDSS) aged at 475 ℃ from as-received condition to 300 h. The electric conductivity results were compared against two electrochemical tests namely double loop electrochemical potentiokinetic reactivation (DL-EPR) and critical pitting temperature (CPT). Mechanical tests and the microstructure characterized using scanning electron microscopy (SEM) imaging are conducted to track the progress of embrittlement. It is shown that the electric conductivity correlates with the changes in impact energy, microhardness, and CPT corrosion tests result demonstrating the feasibility of the four-point probe as a possible field-deployable method for evaluating the 475 ℃ embrittlement of 2507 SDSS.

Development and Performance Test of Preamplifier and Amplifier for Gamma Probe (감마프로브용 전단증폭기와 주증폭기의 개발과 성능 평가)

  • Bong, Jung-Kyun;Kim, Hee-Joung;Lee, Jong-Doo;Kwon, Soo-Il
    • The Korean Journal of Nuclear Medicine
    • /
    • v.33 no.1
    • /
    • pp.100-109
    • /
    • 1999
  • Purpose: Preamplifier and amplifier are very important parts for developing a portable counting or imaging gamma probe. They can be used for analyzing pulses containing energy and position information for the emitted radiations. The commercial Nuclear Instrument Modules (NIMs) can be used for processing these pulses. However, it may be improper to use NIMs in developing a portable gamma probe, because of its size and high price. The purpose of this study was to develop both preamplifier and amplifier and measure their performance characteristics. Materials and Methods: The preamplifier and amplifier were designed as a charge sensitive device and a capacitor resistor-resistor capacitor (CR-RC) electronic circuit, respectively, and they were mounted on a print circuit board (PCB). We acquired and analyzed energy spectra for Tc-99m and Cs-137 using both PCB and NIMs. Multichannel analyzer (Accuspec/A, Canberra Industries Inc., Meriden Connecticut, U.S.A) and scintillation detectors (EP-047(Bicron Saint-Gobain/Norton Industrial EP-047 (Ceramics Co., Ohio, U.S.A) with $2"{\times}2"$ NaI(T1) crystal and R1535 (Hamamatsu Photonics K.K., Electron Tube Center, Shizuoka-ken, Japan) with $1"{\times}1"$ NaI(T1) crystal were used for acquiring the energy spectra. Results: Using PCB, energy resolutions of EP-047 detectors for Tc-99m and Cs-137 were 12.92% and 5.01%, respectively, whereas R1535 showed 13.75% and 5.19% of energy resolution. Using the NIM devices, energy resolutions of EP-047 detector for Tc-99m and Cs-137 were measured as 14.6% and 7.58%, respectively. However, reliable energy spectrum of R1535 detector could not be acquired, since its photomultiplier tube (PMT) requires a specific type of preamplifier. Conclusion: We developed a special preamplifier and amplifier suitable for a small sized gamma probe that showed good energy resolutions independent of PMT types. The results indicate that the PCB can be used in developing both counting and imaging gamma probe.

  • PDF

Is a Camera-Type Portable X-Ray Device Clinically Feasible in Chest Imaging?: Image Quality Comparison with Chest Radiographs Taken with Traditional Mobile Digital X-Ray Devices (카메라형 휴대형 X선 장치는 흉부 촬영에서 임상적 사용이 가능한가?: 기존의 이동형 디지털 X선 장치로 촬영한 흉부 X선 사진과 영상품질 비교)

  • Sang-Ji Kim;Hwan Seok Yong;Eun-Young Kang;Zepa Yang;Jung-Youn Kim;Young-Hoon Yoon
    • Journal of the Korean Society of Radiology
    • /
    • v.85 no.1
    • /
    • pp.138-146
    • /
    • 2024
  • Purpose To evaluate whether the image quality of chest radiographs obtained using a camera-type portable X-ray device is appropriate for clinical practice by comparing them with traditional mobile digital X-ray devices. Materials and Methods Eighty-six patients who visited our emergency department and underwent endotracheal intubation, central venous catheterization, or nasogastric tube insertion were included in the study. Two radiologists scored images captured with traditional mobile devices before insertion and those captured with camera-type devices after insertion. Identification of the inserted instruments was evaluated on a 5-point scale, and the overall image quality was evaluated on a total of 20 points scale. Results The identification score of the instruments was 4.67 ± 0.71. The overall image quality score was 19.70 ± 0.72 and 15.02 ± 3.31 (p < 0.001) for the mobile and camera-type devices, respectively. The scores of the camera-type device were significantly lower than those of the mobile device in terms of the detailed items of respiratory motion artifacts, trachea and bronchus, pulmonary vessels, posterior cardiac blood vessels, thoracic intervertebral disc space, subdiaphragmatic vessels, and diaphragm (p = 0.013 for the item of diaphragm, p < 0.001 for the other detailed items). Conclusion Although caution is required for general diagnostic purposes as image quality degrades, a camera-type device can be used to evaluate the inserted instruments in chest radiographs.

Analysis of Spatial Resolution Characteristics for DMC/UlatraCamXp/ADS80 Digital Aerial Image Based on Visual Method (시각적 기법에 의한 DMC/UlatraCamXp/ADS80 디지털 항공영상의 공간해상도 특성 분석)

  • Lee, Tae Yun;Lee, Jae One
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.24 no.1
    • /
    • pp.61-68
    • /
    • 2016
  • Digital aerial images have been commonly used in a large scale map production owing to their excellent geometry, and high spatial and radiometric resolution in recent years. However, a quality verification process for acquired images should be preceded in order to secure the high precision and reliability of produced results. Several experimental studies to verify digital imaging systems have been vigorously researched by constructing permanent test field in abroad. On the other hand, it is urgently necessary to suggest a practical scheme for an image quality verification, because this related study and experiment are still in its early stage at home. Hence, this study aims to present an easy method to measure the spatial resolution of the image in a visual way using a portable Siemens star. The images used in the study were obtained with three different cameras, two frame array sensors of DMC, UltraCamXp and a linear array sensor of ADS80. The Siemens star target appeared in every image is extracted and then the spatial resolution of image is compared with theoretical GSD(Ground Sample Distance) by a visual method. In addition, the change of spatial resolution depending on the location of the Siemens star from image center and flight direction and cross-flight direction is also compared and analyzed. As study results, while the theoretical GSDs of images taken with each camera are about 6~9cm, the visual resolutions are 1.2~1.3 times as great as the theoretical ones.