• Title/Summary/Keyword: Portable drone

Search Result 5, Processing Time 0.021 seconds

Portable-size Drone Design Using TRIZ Method (TRIZ 기법을 통한 휴대가 용이한 Drone 설계)

  • Kim, Jong Hyeong;Kim, Hyung-jik;Jung, Jae Nam;Jang, Dong-hee;Kwon, Hyuk-dong
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.26 no.2
    • /
    • pp.230-237
    • /
    • 2017
  • Various drones have extended application area very fast. In this paper, we define two contradictions in designing a portable-size drone by using TRIZ technique. The first is a physical contradiction between high rigidity and good portability, and the second is a technical contradiction between high stability and good portability. Through TRIZ technique, six design principles, which guide direction for optimal design, were driven. Consequently, an umbrella mechanism and design criteria were proposed for a portable-size drone. Detail design is verified through finite element method. Test results for the portable-size prototype drone show good performance, and prove its usefulness to be equivalent to a general full-size drone.

Design and Development of Agriculture Drone battery usage Monitoring System using Wireless sensor network

  • Lee, Sang-Hyun;Yang, Seung-Hak;You, Yong-Min
    • International journal of advanced smart convergence
    • /
    • v.6 no.3
    • /
    • pp.38-44
    • /
    • 2017
  • Currently, wired gables have been installed or portable storage devices have been installed for data acquisition of flying drone. In this paper, we propose a technology to transmit data wirelessly by sensing information such as battery discharge value, acceleration, and temperature by attaching RF sensor to a drone. The purpose of this paper is to design and develop the monitoring technology of agriculture drone battery usage in real time using RF sensor. In this paper, we propose a monitoring system that can check real time data of battery changed value, temperature, and acceleration during pesticide control activity of agricultural drone.

Security Threats and Scenarios using Drones on the Battlefield (전장에서 드론을 활용한 보안 위협과 시나리오)

  • Park, Keun-Seog;Cheon, Sang-pil;Kim, Seong-Pyo;Eom, Jung-ho
    • Convergence Security Journal
    • /
    • v.18 no.4
    • /
    • pp.73-79
    • /
    • 2018
  • Since 1910s, the drones were mainly used for military purposes for reconnaissance and attack targets, but they are now being used in various fields such as disaster prevention, exploration, broadcasting, and surveillance of risk areas. As drones are widely used from military to civilian field, hacking into the drones such as radio disturbance, GPS spoofing, hijacking, etc. targeting drones has begun to occur. Recently, the use of drones in hacking into wireless network has been reported. If the artificial intelligence technology is applied to the drones in the military, hacking into unmanned combat system using drones will occur. In addition, a drone with a hacking program may be able to relay a hacking program to the hacking drone located far away, just as a drone serves as a wireless communication station. And the drones will be equipped with a portable GPS jamming device, which will enable signal disturbance to unmanned combat systems. In this paper, we propose security threats and the anticipated hacking scenarios using the drones on the battlespace to know the seriousness of the security threats by hacking drones and prepare for future cyberspace.

  • PDF

Portable and Extensible ARINC 653 for Drones (드론을 위한 이식성과 확장성을 지원하는 ARINC 653)

  • Kim, Jooho;Jo, Hyun-Chul;Jin, Hyun-Wook;Lee, Sangil
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.12
    • /
    • pp.1884-1891
    • /
    • 2016
  • With the various usage of civil drones, such as hobby, filmmaking and surveillance, the need for technology that safely reconstructs software for target application domains has been increasingly rising. In order to support a reliable software integration of avionic systems, the ARINC 653 standard has been proposed and adapted mainly on manned aircrafts. Therefore, applying ARINC 653 on civil drones could be desirable. Though, various researches on implementing ARINC 653 has been conducted, there are still additional requirements to apply ARINC 653 to civil drones that use various platforms and have a wide range of use. In this paper, taking account of these requirements, we implement a portable and extensible ARINC 653 and analyze its performance. We offer the portability with the OS abstraction layer that reduces dependency on a specific operating system, and provide the design that can extend internal functions, such as partition scheduler and process scheduler.

Real-Time Soil Humidity Monitoring Based on Sensor Network Using IoT (IoT를 사용한 센서 네트워크 기반의 실시간 토양 습도 모니터링)

  • Kim, Kyeong Heon;Kim, Hee-Dong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.5
    • /
    • pp.459-465
    • /
    • 2022
  • This paper reports a method to use a wireless sensor network deployed in the field to real-time monitor soil moisture, warning when the moisture level reaches a specific value, and wirelessly controlling an additional device (LED or water supply system, etc.). In addition, we report all processes related to wireless irrigation system, including field deployment of sensors, real-time monitoring using a smartphone, data calibration, and control of additional devices deployed in the field by smartphone. A commercially available open-source Internet of Things (IoT) platform, NodeMCU, was used, which was combined with a 9V battery, LED and soil humidity sensor to be integrated into a portable prototype. The IoT-based soil humidity sensor prototype deployed in the field was installed next to a tree for on-site demonstration for the measurement of soil humidity in real-time for about 30 hours, and the measured data was successfully transmitted to a smartphone via Wifi. The measurement data were automatically transmitted via e-mail in the form of a text file, stored on the web, followed by analyses and calibrations. The user can check the humidity of the soil real-time through a personal smartphone. When the humidity of a soil reached a specific value, an additional device, an LED device, placed in the field was successfully controlled through the smartphone. This LED can be easily replaced by other electronic devices such as water supplies, which can also be controlled by smartphones. These results show that farmers can not only monitor the condition of the field real-time through a sensor monitoring system manufactured simply at a low cost but also control additional devices such as irrigation facilities from a distance, thereby reducing unnecessary energy consumption and helping improve agricultural productivity.