• Title/Summary/Keyword: Port Injection

Search Result 224, Processing Time 0.019 seconds

Effects of Intake Port Swirl and Fuel Injection System on the Performance and Exhaust Emissions in a Turbocharged DI Diesel Engine (터보 차져 DI 디젤엔진에 있어서 성능 및 배기배출물에 미치는 흡기 포트 선회 유동 및 연료 분사계의 성능)

  • Yoon, Jun-Kyu;Cha, Kyung-Ok
    • Journal of ILASS-Korea
    • /
    • v.10 no.3
    • /
    • pp.45-53
    • /
    • 2005
  • The purpose of this study is to analyze that intake port swirl and fuel injection system have an effect on the engine performance in a turbocharged D.I. diesel engine of the displacement 9.4L. As result of steady flow test, when the valve eccentricity ratio moved to cylinder wall, the flow coefficient and swirl intensity is increased. And as the swirl is increased, the mean flow coefficient is decreased, whereas the Gulf factor is increased. Through this engine test, it can be expected to meet performance and emissions by the following applied parameters; the swirl ratio is 2.43, injection timing is BTDC 13oCA and compression is 15.5.

  • PDF

Analysis of Spray and Flow Fields for Development of Spark-ignited Direct Injection Engine (가솔린 직분식 엔진의 연소실 개발을 위한 분무 및 유동장 해석)

  • Choi, K.H.;Park, J.H.;Lee, N.H.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.6
    • /
    • pp.202-209
    • /
    • 1998
  • For development of SDI(Spark-ignited Direct Injection) engine, stratified mixture formation with adequate strength at spark plug was required in wide range of engine operating conditions. So, spray structure under high ambient pressure and spray distribution after impingement on piston bowl in motoring engine was visualized by using laser equipments. Also, incylinder bulk flow structure was measured by using PIV (Paiticle Image Velocimetry) system. Counter-rotating tumble port and bowl piston was found effective to conserve bulk motion directed to spark plug in compression stroke. In addition, mask attached near valve seat in intake port was proposed to attenuate conventional tumble component and enhance counter-rotating tumble component.

  • PDF

Effects of Fuel Injection Strategies on Wall Film Formation at Port Injection Gasoline Engine (포트분사식 가솔린엔진에서 연료분사전략이 Wall Film 생성에 미치는 영향 연구)

  • Lee, Ziyoung;Choi, Jonghui;Jang, Jihwan;Park, Sungwook
    • Journal of ILASS-Korea
    • /
    • v.23 no.1
    • /
    • pp.36-41
    • /
    • 2018
  • Fuel wall film effects power output and cycle deviation by changing the amount of fuel flowing into cylinder in PFI gasoline engines. Reduction of wall film can reduce fuel consumption and improve combustion stability. In this research, the effects of injection strategies including injection pressure and dual injection system is investigated for reducing wall film formation. The CONVERGE software is used for numerical analysis tool and O'Rourke film splash model was used for wall film prediction model. Compared with the reference case wall film decreased with increase of injection pressures, and the film formation reduced when the dual injection system was used.

Change of Spray Characteristics with Mixing Port Length of Y-Jet Atomizers (Y-Jet 노즐에서의 혼합관 길이변화에 따른 분무특성 연구)

  • 송시홍;이상용
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.11
    • /
    • pp.3021-3031
    • /
    • 1994
  • Experiments have been performed to find out the effect of the mixing port length of Y-jet atomizers on the spray performance, using air and water as the test fluids. Water and air flow rates and drop sizes were measured at each injection pressure condition for different mixing port length. The air flow rate was almost unaffected by the change of the mixing port length. However, the water flow rate was relatively susceptible to the change of the mixing port length. The mixing point pressure was very much influenced by the mixing port length. Variations of spatial distribution of Sauter Mean Diameter (SMD, $D_{32}$) and the cross-section-averaged SMD ($D_{32,m}$) with different mixing port length and air/water mass flow rate ratio were examined. Generally, when the mixing port length was reduced, the mean drop size decreased and became spatially even.

Crack Repairing Injection Method of Concrete Structure Using Injection Port and Removable Injector Integrated with Elastic Storage Hall and Smart Valve(TPS Method) (탄성 저장관과 스마트 밸브가 일체화된 주입 포트와 이동식 주입기를 이용한 콘크리트 구조물의 균열보수 주입공법 (TPS 공법)(건설신기술 제 822호))

Prediction of Flow Rate and Drop Size of Low Viscosity Liquid Through Y-Jet Atomizers (Y-Jet노즐을 통한 저점도 액체의 유량 및 입경예측에 관한 연구)

  • 송시홍;이상용
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.12
    • /
    • pp.3377-3385
    • /
    • 1994
  • This paper introduces empirical correlations to obtain the gas/liquid flow rates and the spray drop size of low viscosity liquid injected by Y-jet twin-fluid atomizers. The gas flow rate is well correlated with the gas injection pressure and the mixing point pressure, based on the compressible flow theory. Similarly, the liquid flow rate is determined by the liquid injection pressure and the mixing point pressure, and a simple correlation for the liquid discharge coefficient at the liquid port was deduced from the experimental results. The mixing point pressure, which is one of the essential parameters, was expressed in terms of the gas/liquid flow rate ratio and the mixing port length. Disintegration and atomization mechanisms both within the mixing port and outside the atomizer were carefully re-examined, and a "basic" correlation form representing the mean diameter of drops was proposed. The "basic" correlation was expressed in terms of the mean gas density within the mixing port, gas/liquid mass flow rate ratio and the Weber number. Though the correlation is somewhat complicated, it represents the experimental data within an accuracy of ${\pm}15%$.EX>${\pm}15%$.

Effect of Fuel Injection Timing on the Performance Characteristics in an Si Engine (가솔린기관의 연료분사 시기가 기관성능에 미치는 영향)

  • 조규상;정연종;김원배
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.6
    • /
    • pp.144-152
    • /
    • 1996
  • In the sequential MPI system with one injection for each cycle, engine performance is influenced by the mixture conditions. It can be said that engine performance is improved by being better identical mixture formation conditions for all cylinders. As the fuel injection timing to the intake port effects on the mixture formation conditions and the engine performance, injection timing must be better adjusted to engine requirements. Engine behavior was clearly different depending on the injection time during intake storke. Therefore it was studied that injection timing of fuel effects on the engine performance I. e. combustion stability, COV(imep), A/F excursion, CO,HC emission concentration and fuel consumption. It was found that late intake-synchronous injection was deteriorated the combustion characteristics and performance characteristics, while early intake-synchronous infection resulted in favorable engine behavior.

  • PDF

An Experimental Study on the Smoke Filtration System Using Water Injection and Vacuum Pump driven by Exhaust Gas (물 분사 및 배기가스 구동형 진공펌프를 이용한 매연여과장치에 대한 실험적 연구)

  • Lee, Han-Sung;Kim, Kyong-Hyon;Jung, Suk-Ho;Koh, Dae-Kwon
    • Journal of Power System Engineering
    • /
    • v.17 no.3
    • /
    • pp.17-22
    • /
    • 2013
  • Diesel particulate filter has been adopted in new vehicle with diesel engine. Since the flow of exhaust gas was clogged as particulate matters were deposited in the filter, it have bad effects on a fuel consumption and power. It was investigated that a particulate filtering system with vacuum pump in the exhaust gas line could be free from clogging in previous research. In this study, the effects of water injection and position of inlet port in filtering system on reducing in particulate matter were investigated. It was noticed that particulate matter were decreased remarkable by water injection and moving the position of inlet port.

A Study on the Resistance Characteristics for Planing Craft with Air Injection at the Bottom (선저 공기공급에 따른 활주형선의 저항특성 연구)

  • Park, Chung-Hwan
    • Journal of Navigation and Port Research
    • /
    • v.36 no.3
    • /
    • pp.157-162
    • /
    • 2012
  • A planing craft is designed specifically to achieve comparatively high speed on the surface of the water. The frictional resistance of planing craft can be reduced further by injecting air to the craft's bottom. In this paper, the resistance characteristics of high speed planing crafts with & without air injection at the bottom were compared by sea model-test method. As a result, we conformed that planing craft with air injection has much greater the effect of resistance reduction.

Performance Improvement of a Small-Sized Two Stroke Engine by Hydrogen Direct Injection (수소 직접 분사를 통한 2행정 소형 엔진의 성능 향상에 관한 연구)

  • CHOI, JISEON;KIM, YONGRAE;KIM, SEONYOEB;PARK, CHEOLWOONG;CHOI, YOUNG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.3
    • /
    • pp.255-260
    • /
    • 2022
  • Hydrogen gas fuel was applied to a small-sized two stroke engine for a mobile power source instead of gasoline fuel. Port fuel supply showed a limitation in terms of power due to the back fire at the engine intake manifold. So in this study, hydrogen direct injection system was applied to overcome this drawback by using a low pressure direct gas injector. The result from this strategy showed that hydrogen direct injection improved fuel efficiency as well as torque and power comparing to the port fuel supply system.