• 제목/요약/키워드: Port Injection

Search Result 224, Processing Time 0.019 seconds

The Performance and Emission of the Intake Port Injection Type Hydrogen Fueled Engine (흡기관 분사 방식 수소 연료 기관의 성능 및 배출물에 관한 연구)

  • 이형승;이석재;이종화;유재석;김응서
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.1 no.2
    • /
    • pp.27-33
    • /
    • 1993
  • Using the solenoid driven gas injection valve, Hydrogen fuel supply system was made. It was attached to a single cylinder research engine and intake port injection type hydrogen fueled S.I. engine was constructed. Engine performance, emission characteristics, and abnormal combustion were studied through the engine test performed with the variations of fuel-air equivalence ratio and spark timing. Compared with gasoline, hydrogen burns so fast that cylinder peak pressure and temperature are higher and NO is emitted more at full load condition. IN the case of intake port injection type engine, COVimep becomes lower due to the well-mixing of air and fuel, and engine output is lower owing to the low volumetric efficiency. As fuel-air equivalence ratio goes up, the combustion speed increases, and COVimep decreases. NO emission peaks slightly lean of stoichiometric. As spark timing advances and fuel-air equivalence ratio goes up, the cylinder peak pressure and temperature become higher, so abnormal combustions take place easily.

  • PDF

A study on expansion of lean burn limit with direct injection of the heavy-duty CNG engine (대형 CNG기관의 직접분사화에 의한 희박한계확장)

  • Park, Jung-Il;Chung, Chan-Moon;Noh, Ki-Chul;Lee, Jong-Tai
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3282-3287
    • /
    • 2007
  • Lean combustion is one of the most promising method for increasing engine efficiency and reducing the exhaust emission from SI gas engines. Due to the possibility of partial burn and misfire, however, under lean burn operation, stable flame kernel formation and fast burn rate are needed to guarantee a successful subsequent combustion. Experiment data were obtained on a single-cylinder CNG fueled SI engine to investigate the effect of direct injection, spark timing and variation of injection timing. Experimental results show that lean burn limit is ${\lambda}$=1.3 with port injection, and expansion of lean burn limit ${\lambda}$=1.4 with direct injection method, due to increase of turbulence intensity in cylinder and stratified charge. Combustion duration in lean region is improved by using the variation of injection timing.

  • PDF

An Study on the Spray Structure of Fuel Port Injectors (포트 분사 연료 인젝터의 분무 구조에 관한 연구)

  • Lee, C.S.;Lee, K.H.;Chon, M.S.;Sohn, K.H.;Park, J.S.
    • Journal of ILASS-Korea
    • /
    • v.3 no.3
    • /
    • pp.42-48
    • /
    • 1998
  • This study describes the spray structure of gasoline port injectors by using phase Doppler particle analyzer(PDPA) and particle motion analysis system(PMAS). The characteristics of fuel spray such as the spray penetration, spray angle and breakup processes were obtained by PMAS and the droplet size and mean velocity were measured by PDPA system. Pintle type and two-hole type injectors were used as gasoline port fuel injectors under various injection pressures. The effect of injection pressure on the droplet mean diameter and axial mean velocity of droplet were investigated under the various injection conditions. In addition the comparison of breakup processes for the two types of injectors was also conducted. It Is shown that pintle type injector has smaller droplet size than that of two-hole type injector.

  • PDF

In-Cylinder Fuel Behavior According to Fuel Injection Timing and Port Characteristics in an Sl Engine : Part II-With Low/Medium Swirl (가솔린 엔진에서 연료분사시기와 포트특성에 따른 실린더 내 연료거동 : Part II - 저/중 와류의 경우)

  • 엄인용;조용석
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.3
    • /
    • pp.9-17
    • /
    • 2001
  • This paper is the second of 3 companion papers which investigate axial stratification process. In-cylinder fuel behavior has been investigated in the port injected Sl engine by visualizing for the purpose of understanding stratification. Planar laser light sheet from an Nd:YAG laser has been illuminated through the transparent quartz cylinder of the single cylinder optical engine and the Mie scattered light has been captured through the quartz window in the piston head with an ICCD camera. Fuel has been replaced with an air-ethanol mixture to utilize atomized fuel spray fur the visualization purposes. This results have been compared with steady flow concentration measurement. For low/medium swirl port, the early injection makes such a fuel distribution state that is upper-rich, middle-lean and lower-rich along the combustion chamber and cylinder by tumbling motion. On the other hand, the late injection induces upper-rich, middle-lean and lower-rich state due to the short fuel penetration.

  • PDF

In-Cylinder Fuel Behavior According to Fuel Injection Timing and Port Characteristics in an SI Engine : Part III-With High Swirl (가솔린 엔진에서 연료분사시기와 포트특성에 따른 실린더 내 연료거동 : Part III - 고와류의 경우)

  • 엄인용;조용석
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.3
    • /
    • pp.18-26
    • /
    • 2001
  • This paper is the third of 3 companion papers which investigate axial stratification process. In-cylinder fuel behavior has been investigated in the port injected SI engine by visualizing for the purpose of understanding stratification. Planar laser light sheet from an Nd:YAG laser has been illuminated through the transparent quartz cylinder of the single cylinder optical engine and the Mie scattered light has been captured through the quartz window in the piston head with an ICCD camera. Fuel has been replaced with an air-ethanol mixture to utilize atomized fuel spray for the visualization purposes. This results have been compared with steady flow concentration measurement. In high swirl port, the most fuel remains at combustion chamber and upper cylinder region without being affected by injection timing. The macro-distributed state is not changed but the difference of the amount of fuel around the spark plug varies according to injection timing, which determines LML.

  • PDF

In-Cylinder Fuel Behavior According to Fuel Injection Timing and Port Characteristics in an SI Engine : Part I-Without Swirl (가솔린 엔진에서 연료분사시기와 포트특성에 따른 실린더 내 연료거동 : Part I-와류가 없는 경우)

  • 엄인용;조용석
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.2
    • /
    • pp.19-27
    • /
    • 2001
  • This paper is the first of 3 companion papers which investigate axial stratification process. In-cylinder fuel behavior has been investigated in the port injected SI engine by visualization for the purpose of understanding stratification. Planar laser light sheet from an Nd:YAG laser has been illuminated through the transparent quartz cylinder of the single cylinder optical engine and the Mie scattered light has been replaced with an air-ethanol mixture to utilize atomized fuel spray for the visualization purposes. This results have been compared with steady flow concentration measurement. For no swirl port, the axial penetration depends on the fuel injection timing. The fuel tends to remain in the upper region of the cylinder far from the spark plug and the distribution is not affected by the injection timing except 90 ATDC.

  • PDF

1D Computer Simulation of Diesel Engine Intake Port Swirl Ratios Considering the Fuel Injection Timing Range (디젤 엔진 연료 분사 타이밍 구간에서의 흡기 포트 스월비 1D 컴퓨터 시뮬레이션)

  • Oh, Dae San;Lee, Choong Hoon
    • Journal of ILASS-Korea
    • /
    • v.26 no.2
    • /
    • pp.81-87
    • /
    • 2021
  • This study was performed to calculate the swirl ratio of a diesel engine intake port by a 1D computer simulation under actual engine operating conditions. The swirl ratio of the intake port was simulated according to the change of the engine speed during the operation of the motoring without fuel injection. The swirl ratio of the intake port was simulated according to changes in the crank angle during the four-cycle operation of intake, compression, expansion and exhaust. The swirl ratio represented by the three regions of the piston, center and squish was simulated. Among the three regions, the piston-region swirl ratio is important for effective air-fuel mixing in the engine cylinder. In particular, it was confirmed during the simulation that the piston swirl ratio before and after the compression top dead center (TDC) point when fuel is injected in the DI diesel engine can have a significant effect on the mixing of air and fuel. It was desirable to set the average piston swirl ratio over a crank angle section before and after compression TDC as the representative swirl ratio of the cylinder head intake port according to the change of the engine speed.

Evaluation of Formability Dependent on the Location of Injection Gate of Vertical Machining Center ATC Tool Port Using Injection Molding Analysis (사출성형해석을 이용한 수직머시닝센터 ATC 툴 포트의 사출 게이트 위치에 따른 성형성 평가)

  • Lee, Yu-Wool;Park, Chul-Woo;Kim, Jin-Rok;Choi, Hyun-Jin
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.12
    • /
    • pp.129-135
    • /
    • 2021
  • Injection molding is a manufacturing method of melting the polymer resin and injecting it into a mold to molding it into the desired form. Due to the short molding time and outstanding formability, complex products can be shaped with high precision and it is the most widely used polymer molding method. However, there may be areas that are not filled depending on the location of the injection gate where polymer resin is injected. Formability is determined by deformation and surface precision due to the impact of residual stress after molding. Hence, choosing the location of the injection gate is very important and molding analysis of injection molding is essential to reduce the cost of the mold. This study evaluated the injection formability based on the location of the injection gate of the vertical machining center ATC tool port using injection molding analysis and the results were compared and analyzed. Injection molding analysis was conducted on filling, packing, and deformation according to the location of the gate of the ATC tool port. From each injection gate location, filling time, pressure, and maximum deformation were compared. At gate 2, conditions of molding time and the location of the gate were far superior in production and quality. Gate 2 produced the smallest deformation of 0.779mm with the best quality.

Effects of Port Fuel Injection Characteristics upon HC Emission in SI Engines (연료 분사 특성이 가솔린 엔진 HC 배출에 미치는 영향)

  • 우영민;배충식;이동원
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.2
    • /
    • pp.8-15
    • /
    • 2003
  • During cold operation, fuel injection in the intake port directly contributes to the unburned hydrocarbon formation in spark ignition engines. The relationship between injection parameters and HC emission behavior was investigated through a series of experiments. Spray behavior of port fuel injectors was characterized through a quantitative evaluation of mass concentration of liquid fuel by a patternator and PDA(Phase-Doppler. Anemometer). A 6-hole injector was found to produce finer spray than single hole injector. Using a purpose-built wall, the wetted fuel was measured, which was mostly affected by wall temperature. HC emissions were measured in a production engine varying coolant temperature$(20~80^{\circ}C)$, also with respect to the different types of injectors. In the 6-hole injector application, the engine produced less HC emission in low coolant temperature region. Though it produces much more amount of wetting fuel, it has the advantages of finer atomization quality. In high coolant temperature region, there was little effect by different types of injectors. The control schemes to reduce HC emissions during cold start could be suggested from the findings that the amount of fuel supply and HC emission could be reduced by utilizing fine spray and high intake wall temperature.

Effects of Injection Timing on the Lean Misfire Limit in a SI Engine (가솔린 엔진의 연료분사시기가 희박가연한계에 미치는 영향에 관한 연구)

  • 엄인용;정경석;정인석
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.5
    • /
    • pp.97-103
    • /
    • 1997
  • Effects of fuel injection timing on the lean misfire limit of a sequential MPI SI engine has been investigated. To investigate the interaction of injection timing and intake flow characteristics, so called axial stratification phenomena, 4 kinds of different intake swirl port of the same combustion chamber geometry have been teated in a single cylinder engine test bench. And 2 kinds of fuel, gasoline and compressed natural gas(CNG), were used to see the effect of liquid fuel vaporization. Result shows that combination of port swirl and injection timing governs the lean misfire limit and lean misfire limit envelopes remain almost the same for a given ratio regardless of engine speed. It is also found that two phase flow has some effects on lean misfire limit.

  • PDF