• 제목/요약/키워드: Porphyromonas gingivalis (P. gingivalis)

검색결과 201건 처리시간 0.021초

Porphyromonas gingivalis 분쇄액으로 유도된 파골세포의 분화에 미치는 Taurine과 Alendronate의 효과 (THE INHIBITORY EFFECT OF TAURINE AND ALENDRONATE ON THE OSTEOCLAST DIFFERENTIATION MEDIATED BY SONICATED EXTRACTS OF PORPHYROMONAS GINGIVALIS IN VITRO.)

  • 박주현;금기연;이정현;유윤정;이승종
    • Restorative Dentistry and Endodontics
    • /
    • 제26권4호
    • /
    • pp.285-295
    • /
    • 2001
  • The objective of this study was to investigate the inhibitory effect of taurine and alendronate on the osteoclast differentiation. Osteoblasts and bone marrow cells from 1-2 day old mouse were co-cultured in 10% fetal bovine serum - minimal essential media (FBS-MEM). Osteoclast differentiation was induced by adding the sonicated extracts of Porphyromonas gingivalis (P.gingivalis). Osteoclasts were identified using tartrate resistant acid phosphotase staining (TRAP). Alendronate of 10$^{-7}$, 10$^{-6}$, 10$^{-5}$M and taurine of 500, 1000, 1500$\mu\textrm{g}$/ml were added respectively. The cytotoxic effects of alendronate and taurine were examined using MTT(3-(4,5-dimethylthiazol -2-yl-2,5-diphenyltetrazo- lium bromide) method. After culturing with the sonicated extracts of P.gingivalis, the amounts of IL-6 in the culture supernatant were measured and compared using the ELISA method. The results were as follows : 1. Osteoclasts were differentiated at the concentration of 0.01~0.1$\mu\textrm{g}$/ml sonicated extracts of P.gingivalis. (P<0.05). 2. Alendronate inhibited osteoclasts differentiation at the concentration of 10$^{-5}$ M when the concentration of sonicated extracts of P.gingivalis was 0.01$\mu\textrm{g}$/ml. 3. Taurine inhibited osteoclasts differentiation at the concentration of 1500$\mu\textrm{g}$/ml when the concentration of sonicated extracts of P.gingivalis 0.01$\mu\textrm{g}$/ml. 4. In cytotoxic test (MTT test), no cytotoxic effect was evident in all concentrations of alendronate and taurine. 5. Taurine (10$^{-5}$M) and alendronate(1500$\mu\textrm{g}$/ml) did not change the amounts of IL-6 induced by sonicated extracts of P.gingivalis significantly.

  • PDF

Aptamer Based SPREETA Sensor for the Detection of Porphyromonas gingivalis G-Protein

  • Suk-Gyun Park;Hyun Ju Lee;Taeksoo Ji;Kyungbaek Kim;Seung-Ho Ohk
    • Journal of Microbiology and Biotechnology
    • /
    • 제34권2호
    • /
    • pp.289-295
    • /
    • 2024
  • We have developed an aptamer that specifically binds to Porphyromonas gingivalis to reduce the cellular damage caused by P. gingivalis infection and applied it as a biosensor. P. gingivalis is one of the major pathogens causing destructive periodontal disease among the periodontal microorganisms constituting complex biofilms. Porphyromonas gingivalis G-protein (PGP) known to play an important role in the transmission of germs was used as a target protein for the screening of aptamer. The aptamer that has binds to the G-protein of P. gingivalis, was screened and developed through the Systemic Evolution of Ligands by Exponential Energy (SELEX) method. Modified-Western blot analysis was performed with the aptamer which consisted of 38 single-stranded DNA to confirm the selectivity. ELONA (enzyme linked oligonucleotide assay) used to confirm that the aptamer was sensitive to PGP even at low concentration of 1 ㎍/ml. For the rapid detection of P. gingivalis, we constructed a surface plasmon resonance biosensor with SPREETA using the PGP aptamer. It was confirmed that PGP could be detected as low concentration as at 0.1 pM, which is the minimum concentration of aptamer sensor within 5 min. Based on these results, we have constructed a SPREETA biosensor based on aptamer that can bind to P. gingivalis G-protein. It can be used as an infection diagnosis system to rapidly diagnose and analyze oral diseases caused by P. gingivalis.

Porphyromonas gingivalis와 Tannerella forsythia의 응집반응 (Coaggregation between Porphyromonas gingivalis and Tannerella forsythia)

  • 엄흥식;이석우;박재홍
    • Journal of Periodontal and Implant Science
    • /
    • 제36권1호
    • /
    • pp.265-272
    • /
    • 2006
  • Dental plaque, a biofilm consisting of more than 500 different bacterial species, is an etiological agent of human periodontal disease, It is therefore important to characterize interactions among periodontopathic microorganisms in order to understand the microbial pathogenesis of periodontal disease. Previous data have suggested a synergistic effect of tow major periodontal pathogens Porphyromonas gingivalis and Tannerella forsythia in the periodontal lesion. In the present study, to better understand interaction between P. gingivalis and T. forsythia, the coaggregation activity between these bacteria was characterized. The coaggregation activity was observed by a direct visual assay by mixing equal amount (1 ${\times}$ $10^9$)of T. forsythia and P. gingivaJis cells. It was found that the first aggregates began to appear after 5-10 min, and that the large aggregates completely settled within 1 h. Electron and epifluorescence microscopic studies confirmed cell-cell contact between two bacteria. The heat treatment of P. gingivalis completely blocked the activity, suggesting an involvement of a heat-labile component of P. gingivalis in the interaction. On the other hand, heat treatment of T. forsythia significantly increased the coaggregation activity; the aggregates began to appear immediately. The coaggregation activity was inhibited by addition of protease, however carbohydrates did not inhibit the activity, suggesting that coaggregation is a protein-protein interaction. The results of this study suggest that coaggregation between P. gingivalis and T. forsythia is a result of cell-cell physical contact, and that coaggregation is mediated by a heat-labile component of P. gingivalis and T. forsythia component that can be activated on heat treatment.

임플란트 주위 치주낭내의 Porphyromonas gingivalis 섬모유전형의 출현율 (Prevalence of fimA Genotypes of Porphyromonas gingivalis Strains in peri-implant sulcus)

  • 서동건;권영혁;박준봉;허익;정종혁
    • Journal of Periodontal and Implant Science
    • /
    • 제35권4호
    • /
    • pp.907-919
    • /
    • 2005
  • Porphyromonas gingivalis is a gram negative. black-pigmented anaerobe, associated with periodontitis & peri-implantitis. Fimbriae(fimA) of P. gingivalis are filamentous components on the cell surface and important in the colonization and invasion of periodontal tissue. But all P. gnigivalis strains don't have equal pathogenicity, inequality among strains originates from different fimA genotype. P. gnigivalis fimA gene encoding fimbrillin(structural subunit of fimbriae) has been classified into 5 genotypes(types I to V) based on the nucleotide sequences. In the present study, we examined the prevalence of these fimA genotypes in patients with dental implant and the relationship between prevalence of these genotypes and a condition of peri-implant tissue. Dental plaque specimens obtained from 189 peri-implant sulci of 97 patients with dental implants were analyzed by 16S rRNA fimA gene-directed PCR assay. P. gingivalis were detected in 86.2% of the alll samples. Among the P. gingivalis-positive samples, a significant difference in the occurrence of typeII was observed between test and the two control groups. In two control groups, typeII fimA were detected in 6.3%(PD<5mm/BOP-). 18.7%(PD<5mm/BOP+). In the test $group(PD{\geqq}5mm/BOP+)$, type II fimA genotype were detected most frequently in 50.0% . And a correlation between specific fimA types and peri-implantitis was found in $typeII(R^2=l.105)$. These results suggest that P. gingivalis strains that possess typeII fimA are gradually increased, as a condition of peri-implant tissue is getting complicated and are closely associated with peri-implant health status. We speculate that these organisms be involved in peri-implantitis

Porphyromonas gingivalis Lipopolysaccharide Regulates Migration of Vascular Smooth Muscle Cells

  • Kim, Yeon;Kim, So-Jeong;Kim, Mi-Kyoung;Park, Hyun-Joo;Kim, Hyung Joon;Bae, Soo-Kyung;Bae, Moon-Kyoung
    • International Journal of Oral Biology
    • /
    • 제41권4호
    • /
    • pp.217-223
    • /
    • 2016
  • Porphyromonas gingivalis, a foremost periodontal pathogen, has been known to cause periodontal diseases. Epidemiologic evidences have indicated the involvement of P. gingivalis in the development of cardiovascular diseases. In this study, we show that the P. gingivalis lipopolysaccharide increases the mRNA expression and protein secretion of interleukin-6 in vascular smooth muscle cells. We demonstrate that P. gingivalis LPS activates the extracellular signal-regulated kinase 1/2 (ERK1/2), p38 mitogen-activated protein kinase (MAPK), and Akt, which mediate the IL-6 expression in vascular smooth muscle cells. Also, P. gingivalis LPS stimulates the vascular smooth muscle cell migration, which is a critical step for the progression of atherosclerosis. Moreover, neutralization of the IL-6 function inhibits the migration of vascular smooth muscle cells induced by P. gingivalis LPS. Taken together, these results indicate that P. gingivalis LPS promotes the expression of IL-6, which in turn increases the migration of vascular smooth muscle cells.

임플란트주위염시 Porphyromonas gingivalis 섬모유전형의 출현율 (Prevalence of fimA Genotypes of Porphyromonas gingivalis Strains in peri-implantitis patients)

  • 신승일;권영혁;박준봉;허익;정종혁
    • Journal of Periodontal and Implant Science
    • /
    • 제35권1호
    • /
    • pp.31-41
    • /
    • 2005
  • Fimbriae (fimA) of Porphyromonas gingivalis are filamentous components on the cell surface and are thought to play an important role in the colonization and invasion of periodontal tissue. P. gnigivalis fimA gene encoding fimbrillin, a subunit of fimbriae, has been classified into 5 genotypes (types I to V) based on the nucleotide sequences. In the present study, we examined the prevalence of these fimA genotypes in patients with dental implant and the relationship between prevalence of these genotypes and peri-implantitis. Dental plaque specimens obtained from 80 peri-implant sulci of 50 patients with dental implants were analyzed by 16S rRNA fimA gene-directed PCR assay. P. gingivalis were detected in 74.4% of the samples of the control group (healthy peri- implant sulci; probing depth<5mm) and in 92.0% of the samples of the test group (peri-implant sulci with peri-iimplantitis; probing $depth{\geqq}5mm$). Among the P. gingivalis-positive samples of the control group, the most prevalent fimA type was type I (29.3%), followed by type II (26.8%). In contrast, a majority among the P. gingivalis-positive samples of the test group was type II (56.S%), followed by type I (43.5%). TypeII fimA genotype organisms were detected more frequently in the test group and a significant difference in the occurrence of type II was observed between test and the control groups. A correlation between specific fimA types and peri-implant health status was found in type II (OR 3.545) and only a weak relationship was revealed in typeIV(OR 3.807). These findings indicate that P. gingivalis strains that possess type II fimA are predominant in peri-implant sulci with peri-implantitis and are closely associated with peri-implant health status. P. gingivalis with type II fimA may be involved in peri-implantitis.

The Lipopolysaccharide from Porphyromonas gingivalis Induces Vascular Permeability

  • Kim, Su-Ryun;Jeong, Seong-Kyoon;Kim, Woo-Sik;Jeon, Hwa-Jin;Park, Hyun-Joo;Kim, Mi-Kyoung;Jang, Hye-Ock;Yun, Il;Bae, Soo-Kyung;Bae, Moon-Kyoung
    • International Journal of Oral Biology
    • /
    • 제36권1호
    • /
    • pp.23-29
    • /
    • 2011
  • Porphyromonas gingivalis, one of the major periodontal pathogens, is implicated in the initiation and progression of periodontal disease. The initial stages of periodontal inflammation are accompanied by vascular hyperpermeability. In our present study, we report that the P. gingivalis lipopolysaccharide (LPS) increases the mRNA expression of interleukin-8 (IL-8), a major inducer of vascular permeability, in vascular endothelial cells. P. gingivalis LPS also stimulated the induction of IL-8 secretion in endothelial cells. The P. gingivalis LPS-induced expression of IL-8 was primarily modulated by nuclear factor-${\kappa}$B(NF-${\kappa}$B). P. gingivalis LPS significantly enhanced the vascular permeability both in vitro and in vivo, and a blockade of the IL-8 receptor decreased the P. gingivalis LPS-induced vascular permeability. Taken together, these results suggest that P. gingivalis LPS increases vascular permeability through the NF-${\kappa}$B-dependent production of IL-8 in vascular endothelial cells.

Porphyromonas gingivalis가 일부 구강미생물의 형광 발현에 미치는 영향 (Red fluorescence of oral bacteria interacting with Porphyromonas gingivalis)

  • 김세연;우동협;이민아;김지수;이정하;정승화
    • Journal of Korean Academy of Oral Health
    • /
    • 제41권1호
    • /
    • pp.22-27
    • /
    • 2017
  • Objectives: Dental plaque is composed of 700 bacterial species. It is known that some oral microorganisms produce porphyrin, and thus, they emit red fluorescence when illuminated with blue light at a specific wavelength of <410 nm. Porphyromonas gingivalis belongs to the genus Porphyromonas, which is characterized by the production of porphyrin. The aim of this study was to evaluate red fluorescence emission of some oral microorganisms interacting with P. gingivalis. Methods: Five bacterial strains (P. gingivalis, Streptococcus mutans, Lactobacillus casei, Actinomyces naeslundii, and Fusobacterium nucleatum) were used for this study. Tryptic soy agar medium supplemented with hemin, vitamin K3, and sheep blood was used as a growth medium. The fluorescence emission of bacterial colonies was evaluated under 405 nm-wavelength blue light using a Quantitative Light-induced Fluorescence Digital (QLF-D) camera system. Each bacterium was cultured alone and co-cultured in close proximity with P. gingivalis. The red/green (R/G) ratio of fluorescence image was calculated and the differences of R/G ratio according to each growth condition were compared using the Mann-Whitney test (P<0.05). Results: Single cultured S. mutans, L. casei and A. naeslundii colonies emitted red fluorescence (R/G ratio=$2.15{\pm}0.06$, $4.31{\pm}0.17$, $5.52{\pm}1.29$, respectively). Fusobacterium nucleatum colonies emitted green fluorescence (R/G ratio=$1.36{\pm}0.06$). The R/G ratios of A. naeslundii and F. nucleatum were increased when P. gingivalis was co-cultured with each bacterium (P<0.05). In contrast, the R/G ratios of S. mutans and L. casei were decreased when P. gingivalis was co-cultured with each bacterium (P=0.002, 0.003). Conclusions: This study confirmed that P. gingivalis could affect the red fluorescence of other oral bacteria under 405 nm-wavelength blue light. Our findings concluded that P. gingivalis has an important role for red fluorescence emission of dental biofilm.

Xylitol Mitigate Neutrophil Inflammatory Response Against Porphyromonas gingivalis Infection

  • Na, Hee Sam;Song, YuRi;Choi, Yoon Hee;Chung, Jin
    • International Journal of Oral Biology
    • /
    • 제43권3호
    • /
    • pp.141-146
    • /
    • 2018
  • Periodontitis is generally a chronic disorder characterized by breakdown of tooth-supporting tissues, producing dentition loss. Porphyromonas gingivalis (P. gingivalis), a Gramnegative anaerobic rod, is one of the major pathogens associated with periodontitis. Neutrophils are first line defense cells in the oral cavity that play a significant role in inflammatory response. Xylitol is a known anti-caries agent and has anti-inflammatory effects. In this study, we conducted experiments to evaluate anti-inflammatory effects of xylitol on P. gingivalis infected neutrophils for possible usage in prevention and treatment of periodontal infections. P. gingivalis was intraperitoneally injected and peritoneal lavage was collected for cytokine determination. For in vitro study, neutrophils were collected from mouse peritoneal cells after zymosan injection or bone marrow cells. Neutrophils were stimulated with live P. gingivalis and ELISA was used to determine the effect of xylitol on P. gingivalis induced cytokine production. $IL-1{\beta}$, IL-6, $TNF-{\alpha}$ concentration and neutrophil population in the peritoneal lavage was increased in P. gingivalis-infected mouse. Peritoneal cells infected with live P. gingivalis revealed significantly increased production of $IL-1{\beta}$, IL-6 and $TNF-{\alpha}$ at multiplicity of infection of 10. Neutrophils from bone marrow and peritoneal lavage revealed increased production of $IL-1{\beta}$, IL-6 and $TNF-{\alpha}$. Xylitol significantly mitigated P. gingivalis induced cytokine production in neutrophils. Findings indicate that xylitol is an anti-inflammatory agent in neutrophils infected with live P. gingivalis, that suggests its use in periodontitis management.