• Title/Summary/Keyword: Porous-media

Search Result 591, Processing Time 0.029 seconds

Groundwater Flow Characterization in the Vicinity of the Underground Caverns by Groundwater Level Changes (지하수위 변화에 따른 지하공동 주변의 지하수 유동특성 해석)

  • 강재기;양형식;김경수;김천수
    • Tunnel and Underground Space
    • /
    • v.13 no.6
    • /
    • pp.465-475
    • /
    • 2003
  • Groundwater inflow into the caverns constructed in fractured rock mass was simulated by numerical modeling, NAPSAC (DFN, discrete fracture network model) and NAMMU (CPM, continuous porous media model), a finite-element software package for groundwater flow in 3D fractured media developed by AEA Technology, UK. The input parameters for modeling were determined on surface fracture survey, core logging and single hole hydraulic test data. In order to predict the groundwater inflow more accurately, the anisotropic hydraulic conductivity was considered. The anisotropic hydraulic conductivities were calculated from the fracture network properties. With a minor adjustment during model calibration, the numerical modeling is able to reproduce reasonably groundwater inflows into cavern and the travel length and times to the ground surface along the flow paths in the normal, dry and rainy seasons.

Surfactant Aided Air-sparging for Groundwater Remediation (계면촬성제 첨가에 따른 지하수 폭기법의 폭기효율 변화 연구)

  • 소효은;최경민;이승재;김헌기
    • Economic and Environmental Geology
    • /
    • v.35 no.5
    • /
    • pp.421-428
    • /
    • 2002
  • Lab-scale experiments were conducted to evaluate the effect of surface tension reduction on the extension of the influence zone and the VOC removal efficiency of ground water sparging. A glass column packed with coarse sand was used for VOC removal test at two different surface tensions. A glass column without porous media was also used fer control purpose prior to sand-packed column test. A quasi-two-dimensional glass box model, packed with a sand, was used fer sparging zone tests at different water surface tensions. Surface tension of the aquoues solution used in this study was controlled using sodium dodecyl sulfate (SDS). For the glass, sand column experiments, total amount of air filled in the media increased as surface tension decreased. Toluene (used as VOC in this study) removal rate increased slightly with decreased surface tension f3r both free water column and sand-packed column. Air sparging zone extended up to 500% as the surface tension decreased. Combining the results from two different experiments, VOC removal efficiency is expected to increase significantly with surface tension reduction.

The Effect of Filter Media on the Biofiltration of Air Contaminated by Toluene (톨루엔으로 오염된 공기의 생물학적 여과에 대한 필터용 담체의 영향)

  • 홍성도;한희동;명성운;최호석;김인호
    • KSBB Journal
    • /
    • v.16 no.6
    • /
    • pp.603-608
    • /
    • 2001
  • In this study, we studied on the remeval of toluene vapors in a lab-scale biofilter. Biofiltration was performed in a column fed downflow with contaminated air at ambient conditions. The column was packed with mixture of Peat and Calstene(5:3 vol. Ratio), Synthesized media, Bark and Wood chip, which were inoculated with microbial population of selected stains(Pseudomonas. putida, KCCM 11343, ATCC 12633). The microorganisms were immobilized on the bed medium and then biofilm were formed. The biofilter was operated under the conditions of various inlet toluene concentrations for 180 days and treated up to the elimination capacity of maximum 40 g/㎥hr at the inlet load of 30 g/㎥ hr with percentage removals of 20∼90% and gas retention times between 1 and 2 min. The pressure drop was very negligible through the biofilter columps because its value of 0.054 cmH$_2$O/m was much less than others. The effect of operating conditions such as flow rate, inlet toluene concentration and moisture contents on the performance of the biofilter was sequentially investigated in this study.

  • PDF

Development of Hydroponic Media Using Fly Ash and Clay System Cultures (양액재배용 석탄회-점토계 배지 개발)

  • 김일섭;강위수;신대용;류근창
    • Journal of Bio-Environment Control
    • /
    • v.9 no.1
    • /
    • pp.47-59
    • /
    • 2000
  • In order to investigate the physical and chemical properties of artificial culture media, the specimens were substituted with 5~20% clay, 10~30%(w) quick lime, 5~l5%(w) burnt plaster and 10%(w) sawdust. Fly ash-clay bodies were sintered at 1,050~1,20$0^{\circ}C$ and then their properties were determined. It was found that 90FA10JC(fly ash +clay(90:10, %(w)) specimen sintered at 1,15$0^{\circ}C$ for 10 min. had good physical and chemical properties. When this composition was supplement with 10%(w) sawdust, bulk density water absorption, apparent porosity, compressive strength and pH after 240 hrs curing time were 1.14, 54.4%, 39.5%, 54 kgf.cm$^{-2}$ and 7.1 respectively. The physical properties of fly ash-quick lime-burnt plaster system specimens were superior to FAJC systems. However, this composition we not suitable as a artificial culture media because of its high pH. In this study, it was shown that 90FA10JC10SD(90FA10JC +10%(w) sawdust) system exhibited the best physical properties.

  • PDF

The physicochemical properties of kenaf(Hibiscus cannabinus L.) as mushroom culture media source (버섯배지 재료로서 케나프의 이화학성 분석)

  • Kang, Chan-Ho;Yoo, Young-Jin;Seo, Sang-Young;Choi, Kyu-Hwan;Lee, Ki-Kwon;Song, Young-Ju;Kim, Chung-Kon
    • Journal of Mushroom
    • /
    • v.13 no.3
    • /
    • pp.207-211
    • /
    • 2015
  • To investigate the usefulness of Kenaf(Hibiscus cannabinus L.) as mushroom culture media source, we analyze physical condition and contents of nutritional components. The water absorption rate of Kenaf bast was 578% and it was 95% higher than that of poplar sawdust's. This was caused by Kenaf's porous cellular structure. so it could give more moisture and oxygen to cultured mushroom. Total carbon contents of Kenaf was 91.4%, it was quite higher than that of poplar sawdust, wheat bran and rice bran. Total nitrogen content was 1.76% and C/N ratio was 51.9. The content of NFE(Nitrogen free extract) was 46.6% and it was similar with rice bran. Cellulose content was higher than poplar but lignin content was lower. specially hemicellulose and pectin complex which more digestible carbon source to mushroom was 3.7% higher than poplar. Mineral component and amino acid contents were also maintained high compared with poplar. Fe was 4.2 times, P 3.2 times, K 2.2 times more and Ca was higher 16 mg/kg than poplar. The content of amino acid was quite more higher than poplar sawdust but lower than chaff. Consequently Kenaf had a good trait for basic support material in mushroom culture media and also had a good character as nutritional source.

The Charncteristics of Organic Sludge in Curing Equipment (유기성 슬러지 양생장치의 건조특성)

  • Jung, Ho-Yun;Park, Jae-Sung;Kang, Jin-Soo;Yun, Hee-Chul;Lee, Yeon-Won
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3173-3177
    • /
    • 2007
  • Recently, we have many problems on the process of the sludge. In past, the sewage sludge was treated by reclaimed land or thrown away in the sea. But these methods caused environmental pollution. Today, many researchers are studying various methods for reducing its volume. One of these method, this study is to reduce the moisture of sewage sludge and to solidify it using a dryer and curing equipment. In this research, we investigated about design parameter and operation condition of the equipment. The curing equipment reduces the percentage of water content from 30% of dryer to 10%. So, we have to study the curing characteristics and performance of curing equipment. For example, there are internal flow characteristics and change of the percentage of water content. And we investigated the change of data at outlet along the initial condition, temperature, humidity and air flow. Using this data, we achieve the experimental results of curing efficiency by each geometry and operating condition. And we also investigated numerical analysis of internal flow using CFD code. This research is basic study for optimal design of the curing equipment.

  • PDF

Synthesis and Characterization of pH-sensitive and Self-oscillating IPN Hydrogel in a pH Oscillator (pH 진동계 안에서 pH 감응성 자기진동 IPN 하이드로젤의 합성과 분석)

  • Wang, Liping;Ren, Jie;Zhang, Xiaoyan;Yang, Xiaoci;Yang, Wu
    • Polymer(Korea)
    • /
    • v.39 no.3
    • /
    • pp.359-364
    • /
    • 2015
  • A self-oscillating interpenetrating polymer network (IPN) poly(acrylic acid)/poly(ethylene glycol) (PAA/PEG) hydrogel was prepared by using radical polymerization with a two-step method. The IPN hydrogel was characterized by FTIR spectroscopy and morphological analysis. The results indicated that the chains of PEG and PAA twined to form porous structure which is beneficial to water molecules entering inside of the hydrogel. In addition, the pH-responsive behavior, salt sensitivity, swelling/de-swelling oscillatory behaviors and self-oscillation in a closed pH oscillator were also studied. The results showed that the prepared hydrogel exhibited pH-sensitivity, good swelling/de-swelling reversibility and excellent salt sensitivity. The self-oscillating behavior of swelling/de-swelling for the prepared hydrogel was caused by pH alteration coupled with the external media. This study may create a new possibility as biomaterial including new self-walking actuators and other related devices.

Computer based FEM stabilization of oxygen transport model for material and energy simulation in corroding reinforced concrete

  • Hussain, Raja Rizwan
    • Computers and Concrete
    • /
    • v.12 no.5
    • /
    • pp.669-680
    • /
    • 2013
  • This paper unveils a new computer based stabilization methodology for automated modeling analysis and its experimental verification for corrosion in reinforced concrete structures under the effect of varying oxygen concentration. Various corrosion cells with different concrete compositions under four different environmental conditions (air dry, submerged, 95% R.H and alternate wetting-drying) have been investigated under controlled laboratory conditions. The results of these laboratory tests were utilized with an automated computer-aided simulation model. This model based on mass and energy stabilization through the porous media for the corrosion process was coupled with modified stabilization methodology. By this coupling, it was possible to predict, maintain and transfer the influence of oxygen concentration on the corrosion rate of the reinforcement in concrete under various defined conditions satisfactorily. The variation in oxygen concentration available for corrosion reaction has been taken into account simulating the actual field conditions such as by varying concrete cover depth, relative humidity, water-cement ratio etc. The modeling task has been incorporated by the use of a computer based durability model as a finite element computational approach for stabilizing the effect of oxygen on corrosion of reinforced concrete structures.

A CFD approach to rubble mound breakwater design

  • Dentale, Fabio;Reale, Ferdinando;Di Leo, Angela;Carratelli, Eugenio Pugliese
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.5
    • /
    • pp.644-650
    • /
    • 2018
  • The paper provides some developments of a numerical approach ("Numerical Calculation of Flow Within Armour Units", FWAU) to the design of rubble mound breakwaters. The hydrodynamics of wave induced flow within the interstices of concrete blocks is simulated by making use of advanced, but well tested, CFD techniques to integrate RANS equations. While computationally very heavy, FWAU is gaining ground, due to its obvious advantages over the "porous media", i.e. the possibility of accounting for the highly non stationary effects, the reduced need of ad hoc calibration of filtration parameters and also - in perspective - the evaluation of hydrodynamic forces on single blocks. FWAU however is a complex technique, and in order to turn it into a practical design tool, a number of difficulties have to be overcome. The paper presents recent results about this validation, as well as insight into fluid dynamical aspects.

An Experimental Study on the Flame Stability of Natural Gas/Air Mixture on the Metal Mesh (금속매쉬에서 천연가스/공기 표면연소의 화염안정성에 관한 실험적 연구)

  • You, Hyun-Seok;Lee, Hyun-Chan;Lee, Joong-Sung
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.49-53
    • /
    • 2001
  • A conventional flame type gas combustion major portion of heat is transferred to the body by convection due to small radiant ability of the gas flame. Increasing the radiation component of heat flux in the combustion zone allows to augment the efficiency of gas utilization. Such effect can be reached by using radiative gas burner applied to metal mesh combustion. Basically the gas radiant burner consists of metallic mesh of high heat resisting steels. In terms of this regards, we have made the burner consisted of metal mesh and measured the radiative flame stability of natural gas/air mixture on the metal mesh burner. The pressure loss through the metal mesh is defined by pressure-velocity slope. The more increased the pressure-velocity slope of the metal mesh is, the wider the stable zone of radiave flame on the metal mesh burner is. And the augmentation of mixture flowrate through the metal mesh make narrow the permissible range of equivalence ratio.

  • PDF