• Title/Summary/Keyword: Porous-media

Search Result 591, Processing Time 0.028 seconds

Scattering of torsional surface waves in a three layered model structure

  • Gupta, Shishir;Pati, Prasenjit;Mandi, Anand;Kundu, Santimoy
    • Structural Engineering and Mechanics
    • /
    • v.68 no.4
    • /
    • pp.443-457
    • /
    • 2018
  • In this article, a comparative study has been made to investigate the scattering behaviour of three layered structure model on torsional surface wave. For such model intermediate layer is taken as fiber reinforced composite, resting over a dry sandy Gibson substratum and underlying by different anelastic media. We consider two distinct mediums for topmost layer. In the first case, topmost layer has been taken as fluid saturated homogeneous porous layer, while in the second case the fluid saturated porous layer has been replaced by a transversely isotropic layer. Simple form expression for the secular equation of torsional surface wave has been worked out in both the cases by executing specific boundary conditions, which comprises Whittaker's function and its derivative, for imminent result that have been elaborated asymptotically. Some special cases have been constituted which are in excellent compliance with recorded literatures. For the sake of comparative study, numerical estimation and graphical illustration have been accomplished to identify the effects of the width ratio of the layers, Biot's gravity parameter, sandy parameter, porosity parameter and other heterogeneity parameters corresponding to the layers and half spaces, horizontal compressive and tensile initial stress on the phase velocity of torsional surface wave.

Prediction of Permeability for Braided Preform (브레이드 프리폼의 투과율 계수 예측)

  • Youngseok Song;Youn, Jae-Roun
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.04a
    • /
    • pp.184-187
    • /
    • 2003
  • Complete prediction of second order permeability tensor for three dimensional circular braided preform is critical to understand the resin transfer molding process of composites. The permeability can be predicted by considering resin flow through the multi-axial fiber structure. In this study, permeability tensor for a 3-D circular braided preform is calculated by solving a boundary problem of a periodic unit cell. Flow field through the unit cell is obtained by using a 3-D finite volume method (FVM) and Darcy's law is utilized to obtain permeability tensor. Flow analysis for two cases that a fiber tow is regarded as impermeable solid and permeable porous medium is carried out respectively. It is found that the flow within the intra-tow region of the braided preform is negligible if inter-tow porosity is relatively high but the flow through the tow must be considered when the porosity is low. To avoid checkerboard pressure field and improve the efficiency of numerical computation, a new interpolation function for velocity variation is proposed on the basis of analytic solutions. Permeability of the braided preform is measured through a radial flow experiment and compared with the permeability predicted numerically.

  • PDF

Thermal Characteristics of an N2O Catalytic Ignitor with Packed-bed Geometry (팩 베드 형상을 가지는 N2O 촉매 점화기의 열적현상)

  • You, Woo-Jun;Kim, Jin-Kon;Moon, Hee-Jang;Jang, Seok-Pil
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.4
    • /
    • pp.398-404
    • /
    • 2007
  • In this paper, thermal characteristics of a nitrous oxide ($N_2O$) catalytic reactor with packed-bed geometry are theoretically and numerically investigated. Several researchers experimentally presented that catalytic decomposition of $N_2O$ in a packed bed generates about 82kJ/mole in the exothermic reaction. Based on the results they have studied the catalytic decomposition of $N_2O$ in a packed bed to use it not only as a mono-propellant thrust for small satellites but also as an igniter system for hybrid rockets. So we aim to identify important parameters existing in an $N_2O$ packed-bed geometry, and to clarify its critical effect on thermal characteristics of the catalytic igniter using a porous medium approach.

A study on the effect of process parameters on the corrosion resistance of ion plated Tin films with Ti and Ni interlayers. (이온플레팅시 공정조건이 Ti 및 Ni 중간층을 갖는층을 갖는 TiN 박막의 내식성에 미치는 영향에 관한 연구)

  • 하희성;이종민;이인행;이정중
    • Journal of Surface Science and Engineering
    • /
    • v.30 no.1
    • /
    • pp.33-43
    • /
    • 1997
  • The effects of process parameters substrate such as substrate current and substrate temperature on the corrosion resistance of ion plated TiN film were investigated. TiN fims were deposited on speed steel on which Ti or Ni hed been previously evaporated. Dense TiN films could be obtained under higher substrate current(1A) and substrate temperature($500^{\circ}C$), whereas TiN films deposited with lower substances current(0.5A) and substrate temperature($300^{\circ}C$) showed porous structure. The corrosion resistances of high speed steel was considerably increased when dense TiN films had been formed on it. The effect of Ti and Ni interlayer on the increase of the corrosion resistance was also significant with dense TiN films, while there was little effect of interlayer on the corrosion resistance when TiN films were porous. the effect of interlayer on the corrosion resistance was more outstanding with Ti then with Ni, because Ti reacts more easily with oxygen to form an oxide layer, and it also shows higher resistance against chlorine containing corrosion media.

  • PDF

Experimental study on the heat transfer characteristics of evaporative transpiration cooling (증발분출냉각의 열전달 특성에 관한 실험적 연구)

  • 이진호;남궁규완;김홍제;주성백
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.5
    • /
    • pp.1130-1137
    • /
    • 1988
  • Heat transfer characteristics of evaporative transpiration cooling was investigated experimentally in the range of coolant mass flux, 0.002kg/m$^{2}$.sec~0.015m$^{2}$.sec. Glass beads, sand and copper particles were used as porous media and distilled water was used as a conant. The existence of evaporation zone was confirmed on this experimental conditions and its length increases with increasing article size and with decreasing mass flux. In order to get the low surface temperature, porous materials with high thermal conductivity is preferred when the panicle sizes are same, and small particles with low porosity is effective in case of the same material. Due to the relatively small coolant mass flux, evaporative transpiration cooling system could be stable by the capillary effect.

Experimental investigation of dew formation and heat transfer in the original upper structure of Sokkuram grotto (원형 석굴암 상부구조의 장마철 결로 및 열전달 현상의 실험적 연구)

  • 이진기;송태호
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.5
    • /
    • pp.588-597
    • /
    • 1999
  • Sokkuram grotto, a UNESCO cultural heritage in Kyongju Korea, was originally covered with crushed rocks over its dome with ventilating holes. The grotto was perfectly preserved for more than 12 centuries until the upper structure was replaced with a concrete dome in the early 20th century to protect from total collapse. Since then, heavy dew formed on the granite surface to seriously damage the sculptures until it was further remodeled with air-conditioning facilities in the 60s. It is considered that the original upper porous structure had a dehumidifying capability. This research is made to unveil the dehumidifying mechanism of the rock layer during the rainy season in that area. A rock layer and a concrete layer are tested in a temperature/humidity-controlled room. No dew formation is observed for the two specimen for continued sunny days or continued rainy days. However, heavy dew formed on the concrete surface for a sunny day after long rainy days. It is thought that the sun evaporates water on the ground and dew is formed at the surface as the highly humid air touches the yet cold concrete. On the contrary, no dew formation is observed for the rock layer at any time. Even in the above worst situation, air flows downward through the cool rock layer and moisture is removed before reaching inside. Temperature measurement, flow visualization, observation of dew formation and measurement of air velocity are made to verify the mechanisms.

  • PDF

Flow Analysis of Dry-Type Hollowed Adsorption Tower for Treatment of Deodorization (악취처리를 위한 건식 중공 흡착탑에 대한 유동해석)

  • Cho, En-man;Jeong, Won-hoon;Kim, Bong-hwan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.7
    • /
    • pp.64-70
    • /
    • 2022
  • The aim of this study is to improve the purification efficiency of odor gas by increasing the contact area between an odor gas and adsorbent. To analyze the flow in the adsorption tower, the flow characteristics in the hollow activated carbon-adsorption tower are identified by applying the loss model, which is a porous flow analysis model. The flow characteristics are investigated for pressure loss, velocity distribution, turbulent kinetic energy, and residence time distribution. The results show that the hollow adsorption tower performs better than the solid adsorption tower in terms of pressure loss and performance. The inner diameter of the hollow region inside the adsorption tower is 0.64 m (Di/Do = 0.37). Furthermore, the adsorbent performance is unaffected even when adsorbent stages are installed to replace the adsorbent.

Analytical model of transverse pressure loss in a rod array

  • Ricciardi, Guillaume;Peybernes, Jean;Faucher, Vincent
    • Nuclear Engineering and Technology
    • /
    • v.54 no.7
    • /
    • pp.2714-2719
    • /
    • 2022
  • The present paper proposes some new computational methods and results in the framework of flow computation through congested domains seen as porous media, as it can be found in the core of a Pressurized Water Reactor (PWR). The flow is thus mostly governed by the distribution of pressure losses, both through the porous structures, such as fuel assemblies, and in the thin fluid layers between them. The purpose of the present paper is to consider the question of the interaction of a flow and a rod bundle from an analytical point of view gathering all the contributions through a set of equations as simple and representative as possible. It aims at demonstrating a sound understanding of the relevant phenomena governing the flow establishment in the geometry of interest instead of relying mainly on a posteriori observations obtained both experimentally and numerically. Comparison with two set of experimental results showed good agreement. The model proposed being analytical it appears easily implementable for studies needing an expression of fluid forces in a rod array as for fuel assembly bowing issue. It would be interesting to test the reliability of the model on other geometry with different P/R ratios.

Modeling Bacteria Facilitated Contaminant Transport in Porous Media with Kinetic Adsorption Relationships (동역학적 흡착 관계식을 이용한 다공 매질에서의 유동세균에 의한 유기성 오염물의 가속이송 예측 모델)

  • 김승현
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.2 no.1
    • /
    • pp.22-29
    • /
    • 1995
  • Mobile bacterial particles can act as carriers and enhance the transport of hydrophobic contaminants in ground water by reducing retardation effects. Because of their colloidal size and favorable surface conditions, bacteria can act as efficient contaminant carriers. When such carriers exist in a porous medium, the system can be thought of as three phases: an aqueous phase, a carrier phase, and a stationary solid matrix phase. Contaminant can be present in either or all of these phases. In this study, a mathematical model based on mass balances is developed to describe the transport and fate of biodegradable contaminant in a porous medium. Bacterial mass transfer mechanism between aqueous and solid matrix phases, and contaminant mass transfer between aqueous and bacterial phases are represented by kinetic models. Governing equations are non-dimensionalized and solved to analyze the bacteria facilitated contaminant transport. The numerical results of the facilitation effect match favorably with experimental data reported in the literature. Results show that the contaminant transport can be described by local equilibrium assumption when Damkohler numbers are larger than 10. Significant sensitivities to model parameters, particularly bacterial growth rate and influent bacterial concentration, were discovered.

  • PDF

A Study on Numerical Technique of the Hardened Grout Formed by Grouting (약액주입 시 형성된 고결체의 수치해석 기법 연구)

  • Lee, Jong-Hwi;Chun, Byung-Sik
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.6
    • /
    • pp.27-37
    • /
    • 2011
  • Recently, pressure grouting is widely being used in construction site for strength improvement of ground and water proof, reinforcement and so on. It is necessarily required to estimate an appropriate injection pressure and injection time for economical and reasonable construction in the site through the size and shape of the hardened grout measured according to ground condition. However, sampling for the hardened grout is time-consuming and needs high cost on preliminary test in the site. The system which could predict the size and shape of the hardened grout does not exist until now. Thus, numerical method based on VOF method and porous model was used for the calibration chamber injection test with injection pressure (50 kPa, 100 kPa, 150 kPa) in this study. The results indicate that the numerical technique based on VOF method and porous model among CFD analysis is expected to be a basic study for the prediction of the behavior and solidification of pressure grouting.