• Title/Summary/Keyword: Porous silica thin film

Search Result 12, Processing Time 0.029 seconds

Effect of surface modifiers on the nano porous silica aerogels prepared by ambient drying process (상압건조 나노다공성 실리카 에어로젤에 대한 개질제 효과)

  • Kim, Tae-Jung;Oh, Young-Jei
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.1
    • /
    • pp.77-83
    • /
    • 2007
  • Nanoporous silica aerogels with various surface modifiers were prepared by ambient drying process. Tetraethylorthosilicate (TEOS) were used a raw material. Ambient drying process for various surface modifier was studied in the point of view of a crack-free monolith and thin films and low cost. Various kinds of surface modifiers like as hexamethyldisilazane (HMDSZ), trimethlychlorosilane (TMCS), methlytriethoxylsilane (MTES), and methlytrimethoxysilane (MTMS) were studied in order to enhance hydrophobicity for the silica aerogel. Surface modified aerogels were evaluated by FT-IR, TG, BET, SEM and wetting angle measurement. Homogeneous and crack-free aerogels were obtained by modifying the HMDSZ and the TMCS. However silica xerogel was obtained when modified with MTMS, MTES.

Influence of solvent on the nano porous silica aerogels prepared by ambient drying process (상압건조 나노다공성 실리카 에어로젤에 대한 용매의 영향)

  • Ryu, Sung-Wuk;Kim, Sang-Sig;Oh, Young-Jei
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.5
    • /
    • pp.371-377
    • /
    • 2006
  • Nano porous, transparent silica aerogels monoliths were prepared under ambient drying (1 atm, $270^{\circ}C$) condition by the combination of sol-gel process and surface modification with subsequent heat treatment. Three kinds of solvent, n-hexane, n-heptane and xylene, were selected in the point view of low surface tension and vapor pressure in order to restrain a formation of cracks during drying. Crack-free silica aerogels with over 93 % of porosity and below $0.14g/cm^3$ of density were obtained by solvent exchange and surface modification under atmosphere condition. Optimum solvent was confirmed n-heptane among these solvents through estimation of FT-IR, TGA, BET and SEM. Modified silica aerogel exhibited a higher porosity and pore size compare to unmodified aerogels. Hydrophobicity was also controled by C-H and H-OH bonding state in the gel structure and heat treatment over $400^{\circ}C$ effects to the hydrophobicity due to oxidation of C-H radicals.

Fabrication and Performance Investigation of Surface Temperature Sensor Using Fluorescent Nanoporous Thin Film I (형광 나노 포러스 박막을 이용한 표면 온도 센서의 제작 및 성능 연구 I)

  • Kim, Hyun Jung;Yoo, Jaisuk;Park, Jinil
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.12
    • /
    • pp.668-673
    • /
    • 2013
  • In this study, specimens with nano-sized porous thin films were manufactured by injecting fluorescence solution into the pores. We intended to find out the difference of the fluorescence intensity in each region of the specimen through an experimental apparatus that makes a temperature field. Before conducting experiments, the optimized manufacturing conditions were determined by analysis of all parameters that influence the emission intensity, and the experiments were carried out with the specimens produced in the optimized conditions. Then, the calibration curves of the fluorescence intensity versus temperature were performed by taking the intensity distributions from the specimen in various temperature fields. The surfaces of specimens were coated with Rhodamine-B (Rh-B) fluorescent dye and measured based on the fluorescence intensity. Silica (SiO2) nanoporous structure with 1-um thickness was constructed on a cover glass, and fluorescence dye was absorbed into these porous thin films.

Process Development for Synthesis of Ultra-low Dielectric SiO2 Aerogel Thin by Freeze Drying (동결건조에 의한 극저유전성 실리카 에어로겔 박막 합성공정 개발)

  • 현상훈;김태영
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.3
    • /
    • pp.307-318
    • /
    • 1999
  • 동결건조법에 의한 저유전성 실리카 박막의 제조공정 개발 및 층간 절연물질로의 응용성이 연구되었다. 코팅용 폴리머 실리카 졸은 TEOS와 이소프로판올(iso-propanol:IPA)또는 터트부탄올(tert-butanol:TBA)을 용매로한 2단계 공정에 의하여 제조되었으며, 이들 졸을 p-Si(111)웨이퍼 상에 스핀코팅한 습윤겔 박막을 동결건조 하여 다공성 실리카 박막을 제조하였다. 균일한 박막 코팅층을 얻을 수 있는 실리카 졸의 최적 점도범위는 IPA와 TBA를 용매로 한 실리카 졸의 경우 각각 10~14 cP와 20~30cP 정도였으며 스핀속도는 2000 rpm 이상이었다. 결함이 없는 다공성 실리카 박막은 TBA(빙점 $25^{\circ}C$)를 동결용매로 하여-196$^{\circ}C$까지 급랭시킨 후 $0^{\circ}C$와 0.1 torr 까지 가열 감압한 상태에서 고상의 TBAFMF 모두 제거한 다음 20$0^{\circ}C$까지 열처리하여 제조되었다. 다공성 실리카 박막의 두께는 졸의 타입과 스핀코팅 속도에 의해 2500~15000$\AA$범위 내에서 제어가 가능하였으며 이들 막의 밀도와 유전상 수 값은 각각 0.9$\pm$0.3g/㎤(기공율 60$\pm$10%)과 2.4 정도였다.

  • PDF

Effect of Hydrophobic Coating on Silica for Adsorption and Desorption of Chemical Warfare Agent Simulants Under Humid Condition

  • Park, Eun Ji;Cho, Youn Kyoung;Kim, Dae Han;Jeong, Myung-Geun;Kim, Young Dok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.148.2-148.2
    • /
    • 2013
  • We prepared hydrophobic PDMS-coated porous silica as pre-concentration adsorbent for chemical warfare agents (CWAs). Since CWAs can be harmful to human even with a small amount, detecting low-concentration CWAs has been attracting attention in defense development. Porous silica is one of the promising candidates for CWAs pre-concentration adsorbent since it is thermally stable and its surface area is sufficiently high. A drawback of silica is that adsorption of CWAs can be significantly reduced due to competitive adsorption with water molecule in air since silica is quite hydrophilic. In order to solve this problem, hydrophobic polydimethylsiloxane (PDMS) thin film was deposited on silica. Adsorption and desorption of chemical warfare agent (CWA) simulants (Dimethylmethylphosphonate, DMMP and Dipropylene Glycol Methyl Ether, DPGEM) on bare and PDMS-coated silica were studied using temperature programed desorption (TPD) with and without co-exposing of water vapor. Without exposure of water vapor, desorbed amount of DMMP from PDMS-coated silica was twice larger than that from bare silica. When the samples were exposed to DMMP and water vapor at the same time, no DMMP was desorbed from bare silica due to competitive adsorption with water. On the other hand, desorbed DMMP was detected from PDMS-coated silica with reduced amount compared to that from the sample without water vapor exposure. Adsorption and desorption of DPGME with and without water vapor exposing was also investigated. In case of bare silica, all the adsorbed DPGME was decomposed during the heating process whereas molecular DPGME was observed on PDMS-coated silica. In summary, we showed that hydrophobic PDMS-coating can enhance the adsorption selectivity toward DMMP under humid condition and PDMS-coating also can have positive effect on molecular desorption of DPGME. Therefore we propose PDMS-coated silica could be an adequate adsorbent for CWAs pre-concentration under practical condition.

  • PDF

The Visualization of Temperature Field for Nanoporous Thin Film using Laser-Induced Fluorescence. (형광 나노포러스 박막의 온도장 가시화)

  • Oh, Young-Su;Baek, In-Gi;Jeon, Pil-Soo;Kim, Hyun-Jung;Yoo, Jai-Suk
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2459-2464
    • /
    • 2007
  • In present study, a temperature field of specimens which was coated with fluorescence dye such as Rhodamine-B(Rh-B) has been measured, based on the fluorescence intensity. Silica(SiO2) nano porous structure with 1um thickness was constructed on a cover glass, and fluorescence dye was digested into these porous thin films. To optimize manufacturing coating process, various solvents, Rh-B concentration, and other chemical materials were applied to fabricate the specimen and all specimens were measured on the various temperature conditions. For the measurement, a 14 bit cooled CCD camera with 1600 by 1200 spatial resolution is equipped with epifluorescence microscope to obtain only fluorescence intensity from 1.2 mm by 0.9 mm field of view of the illuminated coated specimen.

  • PDF

The Tribological Behaviors of Mesoporous $SiO_2$ Thin Film Formed by Sol-Gel and Self-Assembly Method (졸겔법과 자가조립법을 통해 제조된 메조포러스 $SiO_2$ 박막의 트라이볼로지 특성)

  • Lee, Young-Ze;Shin, Yun-Ha;Kim, Ji-Hoon;Kim, Ji-Man;Kim, Tae-Sung
    • Tribology and Lubricants
    • /
    • v.23 no.6
    • /
    • pp.298-300
    • /
    • 2007
  • Frictional characteristics of mesoporous $SiO_2$ thin films were evaluated with different pore sizes. The films were manufactured by sol-gel and self-assembly methods to have a porous structure. The pores on the surface may play as the outlet of wear particle and the storage of lubricant so that the surface interactions could be improved. The pores were exposed on the surface by chemical mechanical polishing (CMP) or plasma-etching after forming the porous films. The ball-on-disk tests with mesoporous $SiO_2$ thin films on glass specimen were conducted at sliding speed of 15 rpm and a load of 0.26 N. The results show considerable dependency of friction on pore size of mesoporous $SiO_2$ thin films. The friction coefficient decreased as increasing the pore size. CMP process was very useful to expose the pores on the surface.

Fabrication and Performance Investigation of Surface Temperature Sensor Using Fluorescent Nanoporous Thin Film II (형광 나노 포러스 박막을 이용한 표면 온도 센서의 제작 및 성능 연구 II)

  • Kim, Hyun Jung;Yoo, Jaisuk;Park, Jinil
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.12
    • /
    • pp.674-678
    • /
    • 2013
  • We present a non-invasive technique to the measure temperature distribution in nano-sized porous thin films by means of the two-color laser-induced fluorescence (2-LIF) of rhodamine B. The fluorescence induced by the green line of a mercury lamp with the makeup of optical filters was measured on two separate color bands. They can be selected for their strong difference in the temperature sensitivity of the fluorescence quantum yield. This technique allows for absolute temperature measurements by determining the relative intensities on two adequate spectral bands of the same dye. To measure temperature fields, Silica (SiO2) nanoporous structure with 1-um thickness was constructed on a cover glass, and fluorescent dye was absorbed into these porous thin films. The calibration curves of the fluorescence intensity versus temperature were measured in a temperature range of $10-60^{\circ}C$, and visualization and measurement of the temperature field were performed by taking the intensity distributions from the specimen for the temperature field.

Silica aerogels for potential sensor material prepared by azeotropic mixture (공비혼합물로 제조된 다공성 센서재료용 실리카 에어로젤)

  • Shlyakhtina, A.V.;Oh, Young-Jei
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.6
    • /
    • pp.395-400
    • /
    • 2007
  • Ambient drying sol-gel processing was used for monolithic silica ambigels in the temperature range of $130-250^{\circ}C$. A new method of mesopore ambigels, which mean the aerogels prepared by ambient pressure drying process synthesis, is suggested at first. This method includes two important approaches. The first point is that $SiO_{2}$ surface modification of wet gel was performed by trimethylchlorosilane in n-butanol solution. This procedure is provided the silica gel mesopore structure formation. The second point is a creation of the ternary azeotropic mixture water/n-butanol/octane as porous liquid, which is effectively provided removing of water such a low temperature by 2 step drying condition under ambient pressure. The silica aerogels, which were prepared by ambient pressure drying from azeotropic mixture of water/n-butanol/octane, are transparent, crack-free and mesoporous (pore size ${\sim}$ 5.6 nm) with surface area of ${\sim}$ $923{\;}m^2/g$, bulk density of $0.4{\;}g/cm^3$ and porosity of 85 %.