• 제목/요약/키워드: Porous powders

검색결과 190건 처리시간 0.02초

Synthesis of Oxide Ceramic Powders by Polymerized Organic-Inorganic Complex Route

  • Lee, Sang-Jin;Lee, Chung-Hyo;Waltraud M. Kriven
    • 한국결정성장학회:학술대회논문집
    • /
    • 한국결정성장학회 2000년도 Proceedings of 2000 International Nano Crystals/Ceramics Forum and International Symposium on Intermaterials
    • /
    • pp.151-163
    • /
    • 2000
  • A polymerized organic-inorganic complexation route is introduced for the synthesis of oxide ceramic powders. Polyvinyl alcohol was used as the organic carrier for precursor ceramic gel. Porous and soft powders, which have a high specific surface area, were obtained after calcinating the aerated precursors. The PVA content and its degree of polymerization had a significant influence on the homogeneity of the final powder. In particular, attrition milling process with the porous powder resulted in ultra-fine particles. In the case of the preparation of cordierite powder, nano-size powder, which has a high specific surface area of 181 ㎡/g, was obtained by the milling process. The complexation route was also applied to the synthesis of unstable phase in room temperature like beta-cristobalite, high temperature form of silica.

  • PDF

초음파 변환기용 다공질 PZT 세라믹의 압전 및 음향 특성 (Piezoelecttic and Acoustic Properties of Porous PZT Ceramics for Ultrasonic Transducer Aplications)

  • 박정학;주용관;최헌일;사공건
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1995년도 춘계학술대회 논문집
    • /
    • pp.192-195
    • /
    • 1995
  • PZT powders were prepared by the molten salt synthesis method. The porous PZT was prepared from a mixture of PZT an polyvinylacohol(PVA) powders by BURPS(Burnout Plastic Sphere) technique. The piezolectirc and acoustic properties with various PVA wt% were studied, Piezoelectric coefficient d$\sub$33/ of porous PZT ceramics was almost same to that of single phase PZT ceramics, The thickness mode coupling factor k$\sub$t/ was 0.53~0.59 in comparable with the single phase PZT ceramics(k$\sub$t/=0.7)

  • PDF

다공성 티타늄 임플란트의 생리활성물질 담지특성에 관한 연구 (A study of loading property of the bioactive materials in porous Ti implants)

  • 김영훈
    • 대한치과기공학회지
    • /
    • 제35권4호
    • /
    • pp.281-286
    • /
    • 2013
  • Purpose: Surface modification is important techniques in modern dental and orthopedic implants. This study was performed to try embedding of bioactive materials in porous Ti implants. Methods: Porous Ti implant samples were fabricated by sintering of spherical Ti powders in a high vacuum furnace. It's diameter and height were 4mm and 20mm. Embedding process was used to suction and vacuum chamber. Loading properties of porous Ti implants were evaluated by scanning electron microscope(SEM), confocal laser scanning microscope(CLSM), and UV-Vis-NIR spectrophotometer. Results: Internal pore structure was formed fully open pore. Average pore size and porosity were $10.253{\mu}m$ and 17.506%. Conclusion: Porous Ti implant was fabricated successfully by sintering method. Particles are necking strongly each other and others portions were vacancy. This porous structure can be embedded to bioactive materials. Therefore bioactive materials will be able to embedding to porous Ti implants. Bioactive materials embedding in the porous Ti implant will induced new bone faster.

전기방전소결에 의해 제조된 다공성 및 다공성 표면을 갖는 Ti-6Al-4V 임플란트 : (1) 제조방법 및 기본적 특성 (Fully Porous and Porous Surfaced Ti-6Al-4V Implants Fabricated by Electro-Discharge-Sintering: (1) Fabrication Method and Fundamental Characteristics)

  • 현창용;허재근;이원희
    • 한국분말재료학회지
    • /
    • 제12권5호
    • /
    • pp.325-331
    • /
    • 2005
  • Implant prototypes with various porosities were fabricated by electro-discharge-sintering of atomized spherical Ti-6Al-4V powders. Single pulse of 0.75 to 2.0 kJ/0.7 g-powder, using 150, 300, and $450{\mu}F$ capacitors was applied to produce a fully porous and porous surfaced implant compact. The solid core formed in the center of the compact after discharge was composed of acicular ${\alpha}+{\beta}$ grains and porous layer consisted of particles connected in three dimensions by necks. The solid core and neck sizes increased with an increase in input energy and capacitance. On the other hand, pore volume decreased with increased capacitance and input energy due to the formation of solid core. Capacitance and input energy are the only controllable discharge parameters even though the heat generated during a discharge is the unique parameter that determines the porosity of compact. It is known that electro-discharge-sintering of spherical Ti-6Al-4V powders can efficiently produce fully-porous and porous surfaced Ti-6Al-4V implants with various porosities in a short time less then 400 isec by manipulating the discharging condition such as input energy and capacitance including powder size.

수전해·연료전지 가역셀에서 이중 가스 확산층의 효과 (Effect of Double Porous Layer on a Polymer Electrolyte Unitized Regenerative Fuel Cell)

  • 황철민;박대흠;정영관;김경훈;김종수
    • 한국수소및신에너지학회논문집
    • /
    • 제24권4호
    • /
    • pp.320-325
    • /
    • 2013
  • TUnitized reversible fuel cells (URFC) combine the functionality of a fuel cell and electrolyzer in one unitized device. For a URFC with proton exchange membrane, a titanium (Ti)-felt is applied to the gas diffusion layer (GDL) substrate at the oxygen electrode, and additionally titanium (Ti)-powders and TiN-powders are loaded in the GDL substrate as a micro porous layer (MPL). Double porous layer with TiN MPL was not acceptable for the URFC because both of fuel cell performance and electrolysis performance are degraded. The double porous layer with Ti-powder loading in the Ti-felt substrate influence rearly for the electrolysis performance. In contrast, the change of pore-size distribution brings a significant improvement of fuel cell performance under fully humidification conditions. This fact indicates that the hydrophobic meso-pores in the GDL play an important role for mass transport.

다공성 SiC-Si 복합체의 전기비저항에 미치는 Si 첨가량의 영향 (Effect of Si Addition on Resistivity of Porous SiC-Si Composite for Heating Element Application)

  • 전신희;이원주;공영민
    • 한국재료학회지
    • /
    • 제25권5호
    • /
    • pp.258-263
    • /
    • 2015
  • To fabricate porous SiC-Si composites for heating element applications, both SiC powders and Si powders were mixed and sintered together. The properties of the sintered SiC-Si body were investigated as a function of SiC particle size and/or Si particle contents from 10 wt% to 40 wt%, respectively. Porous SiC-Si composites were fabricated by Si bonded reaction at a sintering temperature of $1650^{\circ}C$ for 80 min. The microstructure and phase analysis of SiC-Si composites that depend on Si particle contents were characterized using scanning electron microscope and X-ray diffraction. The electrical resistivity of SiC-Si composites was also evaluated using a 4-point probe resistivity method. The electrical resistivity of the sintered SiC-Si body sharply decreased as the amount of Si addition increased. We found that the electrical resistivity of porous SiC-Si composites is closely related to the amount of Si added and at least 20 wt% Si are needed in order to apply the SiCSi composites to the heating element.

다공성 분체가 CNTs의 분산성에 미치는 영향 (Effect of Porous Powder on CNTs Dispersibility)

  • 이건철;김영민
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2020년도 봄 학술논문 발표대회
    • /
    • pp.199-200
    • /
    • 2020
  • In this study, the effect of porous powders on the dispersibility and strength properties of CNTs was examined.As a result of the experiment, it was found that in the case of incorporation of CNT, the compressive strength property was significantly improved by improving the dispersibility of CNT.

  • PDF

소결방법에 따른 다공성 티타늄 임플란트의 기계적 특성 (Mechanical property of porous Ti implants by sintering method)

  • 김영훈
    • 대한치과기공학회지
    • /
    • 제34권3호
    • /
    • pp.221-226
    • /
    • 2012
  • Purpose: This study was performed to compare mechanical properties for sintering methods of porous Ti implants. Methods: The specimens of Ti implant were fabricated by several sintering methods. One of them is spark plasma sintering(SPS). Another is electro discharge singering(EDS) and the other is high vacuum sintering(HVS). Mechanical properties of porous Ti implants were evaluated by universal testing machine(UTM) and their fracture surface was examined under a sanning electron microscope(SEM). Results: The tensile strength was in a range of 71 to 230 MPa, and Young's modulus was in a range of 11 to 21 Gpa. It matched with range of cortical bone. Conclusion: Mechanical properties of porous Ti implants were similar to human bone. It was shown that sintering methods of spherical powders can efficiently produce porous Ti implants with various porosities. Porous metals will be commonly used in orthopedic and dental application despite of initial focus has been on bioceramics.

금속산화물 분말의 동결건조 및 수소환원에 의한 Mo-Cu 다공체 제조 (Fabrication of Porous Mo-Cu by Freeze Drying and Hydrogen Reduction of Metal Oxide Powders)

  • 강현지;한주연;오승탁
    • 한국분말재료학회지
    • /
    • 제26권1호
    • /
    • pp.1-5
    • /
    • 2019
  • In this study, porous Mo-5 wt% Cu with unidirectionally aligned pores is prepared by freeze drying of camphene slurry with $MoO_3-CuO$ powders. Unidirectional freezing of camphene slurry with dispersion stability is conducted at $-25^{\circ}C$, and pores in the frozen specimens are generated by sublimation of the camphene crystals. The green bodies are hydrogen-reduced at $750^{\circ}C$ and sintered at $1000^{\circ}C$ for 1 h. X-ray diffraction analysis reveals that $MoO_3-CuO$ composite powders are completely converted to a Mo-and-Cu phase without any reaction phases by hydrogen reduction. The sintered bodies with the Mo-Cu phase show large and aligned parallel pores to the camphene growth direction as well as small pores in the internal walls of large pores. The pore size and porosity decrease with increasing composite powder content from 5 to 10 vol%. The change of pore characteristics is explained by the degree of powder rearrangement in slurry and the accumulation behavior of powders in the interdendritic spaces of solidified camphene.

전기방전소결을 이용한 Ti-Ni-Zr 준 결정상의 상변화 연구와 Ti, W 다공체 제작 (Phase Transformation of Ti-Ni-Zr Icosahedral Phase and Fabrication of Porous Ti and W Compacts using Electro-Discharge Sintering)

  • 조재영;송기안;이민하;이효수;이원희;김기범
    • 한국분말재료학회지
    • /
    • 제18권2호
    • /
    • pp.149-158
    • /
    • 2011
  • Electro-Discharge Sintering (EDS) employs a high-voltage/high-current-density pulse of electrical energy, discharged from a capacitor bank, to instantaneously consolidate powders. In the present study, a single pulse of 0.57-1.1 kJ/0.45 g-atomized spherical $Ti_{52}Zr_{28}Ni_{20}$ powders in size range of 10~30 and $30\sim50{\mu}m$ consisting of ${\beta}$-(Ti, Zr) and icosahedral phases were applied to examine the structural evolution of icosahedral phase during EDS. Structural investigation reveals that high electrical input energy facilitates complete decomposition of icosahedral phase into C14 laves and ${\beta}$-(Ti, Zr) phases. Moreover, critical input energy inducing decomposition of the icosahedral phase during EDS depends on the size of the powder. Porous Ti and W compacts have been fabricated by EDS using rectangular and spherical powders upon various input energy at a constant capacitance of $450{\mu}F$ in order to verify influence of powder shape on microstructure of porous compacts. Besides, generated heat (${\Delta}H$) during EDS, which is measured by an oscilloscope, is closely correlated with powder size.