• Title/Summary/Keyword: Porous powders

Search Result 190, Processing Time 0.026 seconds

Characteristics of Porous YAG Powders Fabricated by PVA Polymer Solution Technique

  • Lee, S.J.;Shin, P.W.;Kim, J.W.;Chun, S.Y.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.438-439
    • /
    • 2006
  • Pure and stable YAG $(Y_3Al_5O_{12})$ powders were synthesized by a PVA (polyvinyl alcohol) polymer solution technique. PVA was used as an organic carrier for the precursor ceramic gel. The precursor gels were crystallized to YAG at relatively a low temperature of $900\;^{\circ}C$. The synthesized powders, which have nano-sized primary particles, were soft and porous, and the porous powders were ground to sub-micron size by a simple ball milling process. The ball-milled powders were densified to 94% relative density at $1500\;^{\circ}C$ for 1h. In this study, the characteristics of the synthesized YAG powders were examined.

  • PDF

Fabrication of Porous Cu by Freeze-drying Process of Camphene Slurry with CuO-coated Cu Powders (CuO가 코팅된 Cu 분말을 혼합한 Camphene 슬러리의 동결건조에 의한 Cu 다공체 제조)

  • Bang, Su-Ryong;Oh, Sung-Tag
    • Journal of Powder Materials
    • /
    • v.21 no.3
    • /
    • pp.191-195
    • /
    • 2014
  • This study reports a simple way of fabricating the porous Cu with unidirectional pore channels by freeze drying camphene slurry with Cu oxide coated Cu powders. The coated powders were prepared by calcination of ball-milled powder mixture of Cu and Cu-nitrate. Improved dispersion stability of camphene slurry could be achieved using the Cu oxide coated Cu powders instead of pure Cu powders. Pores in the frozen specimen at $-25^{\circ}C$ were generated by sublimation of the camphene during drying in air, and the green bodies were sintered at $750^{\circ}C$ for 1 h in $H_2$ atmosphere. XRD analysis revealed that the coated layer of Cu oxide was completely converted to Cu phase without any reaction phases by hydrogen heat treatment. The porous Cu specimen prepared from pure Cu powders showed partly large pores with unidirectional pore channels, but most of pores were randomly distributed. In contrast, large and aligned parallel pores to the camphene growth direction were clearly observed in the sample using Cu oxide coated Cu powders. Pore formation behavior depending on the initial powders was discussed based on the degree of powder rearrangement and dispersion stability in slurry.

Effects of Porous Microstructure on the Electrochemical Properties of Si-Ge-Al Base Anode Materials for Li-ion Rechargeable Batteries (리튬이차전지용 다공성 Si-Ge-Al계 음극활물질의 전기화학적 특성)

  • Cho, Chung Rae;Kim, Myeong Geun;Sohn, Keun Yong;Park, Won-Wook
    • Journal of Powder Materials
    • /
    • v.24 no.1
    • /
    • pp.24-28
    • /
    • 2017
  • Silicon alloys are considered promising anode active materials to replace Li-ion batteries by graphite powder, because they have a relatively high capacity of up to 4200 mAh/g, and are environmentally friendly and inexpensive ECO-materials. However, its poor charge/discharge properties, induced by cracking during cycles, constitute their most serious problem as anode electrode. In order to solve these problems, Si-Ge-Al alloys with porous structure are designed as anode alloy powders, to improve cycling stability. The alloys are melt-spun to obtain the rapidly solidified ribbons, and then ball-milled to make fine powders. The powders are etched using 1 M HCl solution, which gives the powders a porous structure by removing the element Al. Subsequently, in this study, the microstructures and the characteristics of the etched powders are evaluated for application as anode materials. As a result, the etched porous powder shows better electrochemical properties than as-milled Si-Ge-Al powder.

Fabrication of Porous Nano Particles from Al-Cu Alloy Nano Powders Prepared by Electrical Wire Explosion (전기선 폭발법으로 제조된 Al-Cu 합금 나노분말을 이용한 다공성 나노 입자 제조)

  • Park, Je-Shin;Kim, Won-Baek;Suh, Chang-Youl;Ahn, Jong-Gwan;Kim, Byoung-Kyu
    • Journal of Powder Materials
    • /
    • v.15 no.3
    • /
    • pp.234-238
    • /
    • 2008
  • Al-Cu alloy nano powders have been produced by the electrical explosion of Cu-plated Al wire. The porous nano particles were prepared by leaching for Al-Cu alloy nano powders in 40wt% NaOH aqueous solution. The surface area of leached powder for 5 hours was 4 times larger than that of original alloy nano powder. It is demonstrated that porous nano particles could be obtained by selective leaching of alloy nano powder. It is expected that porous Cu nano powders can be applied for catalyst of SRM (steam reforming methanol).

A New Technology of Hardening Porous Materials of Titan Powders

  • Belyavin, K.E.;Minko, D.V.;Reshetnikov, N.V.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1012-1013
    • /
    • 2006
  • A technology of hardening porous materials of titan powders has been elaborated. The technology is based on passing alternating current with duration of ${\sim}10^{-1}{\ldots}10^1$ s through porous ($35{\ldots}40%$) blanks made by method of Sintering by Electric Discharge (SED) by passing a pulse of current with duration of ${\sim}10^{-5}{\ldots}10^{-3}$ s. The influence of technological regimes of porous blanks treatment on their structure and properties is investigated. Geometry and dimension of contact necks between powder particles of obtained samples are evaluated. Variations of porosity and strengths as well as microstructure of porous samples materials before and after treatment are investigated. Optimum range of treatment technological regimes is determined within which porosity of $30{\ldots}35%$ with maximum strength values.

  • PDF

The Selective Leaching of Al-Ni Alloy Nano Powders Prepared by Electrical Wire Explosion (전기선 폭발법에 의하여 제조된 Al-Ni 합금 나노분말의 선택적 침출)

  • Park, Je-Shin;Kim, Won-Baek;Suh, Chang-Youl;Chang, Han-Kwon;Ahn, Jong-Gwan;Kim, Byoung-Kyu
    • Journal of Powder Materials
    • /
    • v.15 no.4
    • /
    • pp.308-313
    • /
    • 2008
  • Al-Ni alloy nano powders have been produced by the electrical explosion of Ni-plated Al wire. The porous nano particles were prepared by leaching for Al-Ni alloy nano powders in 20wt% NaOH aqueous solution. The structural properties of leached porous nano powder were investigated by nitrogen physisorption, X-ray diffraction (XRD) and transmission Microscope (TEM). The surface areas of the leached powders were increased with amounts of AI in alloys. The pore size distributions of these powders were exhibited maxima at range of pore diameters 3.0 to 3.5 nm from the desorption isotherm. The maximum values of those were decreased with amounts of Al in alloys.

Reinforcement of Porous Mullite Ceramics Using Ultra Fine Mullite Precursor Powders

  • Cho, Yong-Ick;Hisao Suzuki;Hidehiro Kamiya
    • The Korean Journal of Ceramics
    • /
    • v.5 no.2
    • /
    • pp.137-141
    • /
    • 1999
  • To increase the strength of high-purity porous mullite ceramics, ultra fine mullite precursor powders of about 10nm in diameter were deposited at point of contact between primary coarse mullite particles of about 60$\mu\textrm{m}$. The deposited and hetero coagulated structures of ultra fine mullite precursor powders were controlled by pH. The optimum pH condition to form a uniform deposition of mullite powders between coarse mullite particles was in the range from 7 to 8. Deposition of the ultra fine powders did not form at pH < 7 and pH > 10 irregular deposition was observed from pH 8 to 9.

  • PDF

Fabrication of Duplex Ceramic Composites by Organic-Inorganic Solution Process

  • Lee, Sang-Jin;Kim, Youn-Cheol
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.9
    • /
    • pp.837-841
    • /
    • 2003
  • Duplex microstructure of zirconia and alumina has been achieved via an organic-inorganic solution technique. Zirconium 2,4-pentanedionate, aluminum nitrate and polyethylene glycol were dissolved in ethyl alcohol without any precipitation. The organicinorganic precursor gels were turned to porous powders having volume expansion through explosive, exothermic reaction during drying process. The volume expansion was caused by abrupt decomposition of the organic groups in the gels during the vigorous exothermic reaction. The volume expanded, porous powders were crystallized and densified at 1500$^{\circ}C$ for 1 h. At the optimum amount of the PEG polymer, the metal cations were well dispersed in the solution and a homogeneous polymeric network was formed. The polymer content also affected on the specific surface area of the synthesized powder and the grain size of the sintered composite.

Pulse-echo Response of Ultrasonic Transducer Fabricated by Porous Piezoceramics PZT Resonator (다공질 압전소자(PZT)로 제작된 초음파 트랜스듀서의 펄스에코 응답특성)

  • Joo, Yong-Khoan;Lee, Su-Ho;Park, Jung-Hak;SaGong, Geon
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.358-360
    • /
    • 1995
  • PZT powders were prepared by the molten salt synthesis method. The porous PZT specimens were prepared from a mixture of PZT and polyvinylalcohol(PVA) powders by BURPS(Burnout Plastic Sphere) technique. The pulse-echo response of porous PZT transducer with various PVA wt.% were studied. The fall time of pulse-echo response of porous PZT transducer was shorten to that of solid PZT-maded transducer. Therefore, a good transmitting and receiving properties could be obtained. The distance between transducer and reflector was in good agreement both solid PZT and porous PZT fabricated transducer.

  • PDF

Piezoelectric and Acoustic Properties of Porous PZT Ceramics (다공질 PZT 세라믹의 압전 및 음향 특성)

  • 박정학;최헌일;사공건
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1994.11a
    • /
    • pp.183-186
    • /
    • 1994
  • Porous piezoelectric ceramics of P7T have been newly developed to apply for transducers in an echo sounder PZT powders were prepared by the molten salt synthesis method. The porous PZT was prepared from a mixture of PZT and polyvinylalcohol(PVA) powders by BURPS(Burnout Plastic Sphere) technique. The piezoelectric and acoustic properties with various PVA wt.% have studied. The density of porous PZT ceramics was decreased linearly with increasing the PVA sphere wt.%. Piezoelectric coefficient d$\_$33/ of porous PZT ceramics was almost same to that of single phase PZT ceramics. The thickness mode coupling factor k$\_$t/ was ranged over 0.53∼0.59 comparable with the single phase PZT ceramics(k$\_$t/=0.7).