• Title/Summary/Keyword: Porous particle

Search Result 371, Processing Time 0.032 seconds

Characteristics of TPH Decomposition in a Close-typed Simulated Biopile System Amended with a Sintered Porous Media (소결다공체를 적용한 Closed Type 모사바이오파일시스템의 TPH 분해 특성)

  • Jung, Hyun-Gyu;Choi, Sang-Il;Kim, Hye-Jin;Kim, Sang-Kook;Kim, Yu-Beom
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.3
    • /
    • pp.415-424
    • /
    • 2011
  • This research was conducted to verified the effectiveness of a sintered porous media coated with organic matter as nutrient source and microorganisms as decomposer effective in TPH decomposition for a closed-typed biopole system. The organic matter content in the sintered porous media which was developed with bentonite increased with increasing dilution ratio of pig slurry and the sintered porous media as well as decrease in the particle size of sintered porous media. The decomposition rate of TPH was significantly increased with increasing aeration than that under atmospheric condition. Also the sintered porous media containing organic matter and microorganisms proved that the decomposition was enhanced with addition of nutrients sources in addition to aeration periodically.

Relationship between Mechanical Properties and Porosity of Porous Polymer Sheet Fabricated using Water-soluble Particles (수용성 입자를 이용한 다공성 폴리머 구조체의 공극률 향상과 기계적 물성과의 관계)

  • So, Sae-Rom;Park, Suk-Hee;Park, Sang-Hu
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.6
    • /
    • pp.16-23
    • /
    • 2018
  • A polymer porous sheet, which can be applied to diverse wearable devices, has some advantages such as light-weight, high flexibility, high elongation, and so many others. In order to fabricate a porous sheet, water-soluble particles like sugar were utilized frequently, and there has been great advances. However, with our best knowledge, there are not enough reports on the mechanical behavior of porous sheets having different porosity. So, in this work, we tried to find out the relationship between porosity and mechanical deformation of a porous sheet. The process parameters such as a particle size, sheet thickness and PDMS mixing ratio with curing agent were analyzed on the effect of increasing the porosity of a sheet. Also, mechanical deformation of a sheet was tested using a tensile experiment. Through the experimental results, we make a conclusion that a highly porous sheet with thin thickness has high flexibility, and it deformed nearly double elongation comparing to worst one among nine cases.

Analytical Study of heat Transfer in Evaporative Cooling of a Porous Layer (다공층의 증발냉각 열전달에 관한 해석적 연구)

  • 김홍제;이진호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.1
    • /
    • pp.104-111
    • /
    • 1992
  • In this study, the heat transfer characteristics of the evaporative transpiration cooled system is analytically investigated considering the occurrence of the two-phase evaporation zone. Under the condition of the external heat input, analytical solutions of the three regions (i.e., vapor, liquid and two-phase evaporation zone) are respectively obtained using the matching conditions for the steady-state problem where properties are constant. As results, the length of the evaporation zone increases with increasing heat input and with decreasing mass flow rate. It also increases with increasing particle size, system porosity, thermal conductivity of material, inlet temperature and latent heat of coolant. The position of the lower interface of the evaporation zone have a lot of efforts on the evaporation zone length, the position of the upper interface penetrates deeper into the porous layer with lower thermal conductivity of porous material, higher system porosity and larger particle size.

Process for the Preparation of Conducting Polymer Composites (II) : The Effect of Polymerization Parameters on Conductivity (전도성 고분자 복합체 제조를 위한 신합성 연구(II) : 중합변수에 따른 전도성 고분자 복합체의 전도도 변화)

  • Son, Suk-Hye;Pak, Young-Jun;Kim, Jung-Hyun
    • Applied Chemistry for Engineering
    • /
    • v.7 no.6
    • /
    • pp.1061-1068
    • /
    • 1996
  • The conducting polymer composites were prepared by imbibing the porous particle wish the $FeCl_3$ oxidant solution, drying the imbibed porous particle, and imbibing again with pyrrole solution for polymerization to take place in the pore of porous particles. The effect of synthesis conditions on the conductivity of composite polymers were investigated. It was found that the conductivity of composite polymers was dependant on the concentration of pyrrole monomer, nature of the oxidants and solvents used for the oxidant and pyrrole, which influence the degree of penetration/distribution of polyprrole in the composite and reaction of dopant with pyrrole.

  • PDF

Eco-Friendly Synthesis of Rod-Like Potassium Hexatitanate Particles (친환경 공정에 의한 봉상형 육티탄산칼륨 입자의 제조)

  • Lee, Chongmin;Chang, Hankwon;Jang, Hee Dong
    • Particle and aerosol research
    • /
    • v.13 no.4
    • /
    • pp.183-189
    • /
    • 2017
  • Potassium hexatitanate ($K_2Ti_6O_{13}$) with high thermal insulating capacity, good mechanical properties, and excellent chemical stability are promising functional materials in the field of reinforcing material, heat insulating paints and automotive brake linings. In this study, we successfully synthesized rod-shaped potassium hexatitanate ($K_2Ti_6O_{13}$) by aerosol spray drying and post heat treatment as an eco-friendly process. The $KHCO_3-TiO_2$ porous particles were firstly synthesized from a colloidal mixture of $K_2CO_3$ and $TiO_2$ via aerosol spray drying. Size of $KHCO_3-TiO_2$ porous particles was ranged from $1{\mu}m$ to $5{\mu}m$. The porous particles were then heated to fabricate rod-type $K_2Ti_6O_{13}$. The length and width of rod-type composites were affected by temperature and heating time. The length and width of $K_2Ti_6O_{13}$ were increased by 830 nm and 500 nm, respectively, as the reaction temperature and time increased.

Porous Materials from Waste Bottle Glasses by Hydrothermal Treatment (수열처리에 의한 폐병유리의 다공질 재료화)

  • Lim, Dong-Kyu;Kang, Eun-Tae
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.3
    • /
    • pp.275-281
    • /
    • 2009
  • Porous materials were manufactured by hydrothermal treatment of waste bottle glass without foam agent. Factorial design was applied to analyze data by statistical methods and deal with the important factors for a process. The largest effect for porosity was for temperature of hydrothermal treatment. Amount of water and temperature-water interaction appeared to have little effect. The particle size of raw material was also identified as a major factor by one-way ANOVA and the porosity decreased as the size increased. The sintering temperature was not statistically significant for the porosity but was significant for the pore size. The porous material had compressive strength and thermal conductivity comparing with those of ALC (autoclaved lightweight concrete), although it has higher porosity than for ALC.

PTV velocity field measurements of flow around a triangular prism located behind a porous fence (다공성 방풍벽 뒤에 놓인 삼각 프리즘 주위 유동의 PTV 속도장 측정)

  • Kim, Hyeong-Beom;Lee, Sang-Jun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.5
    • /
    • pp.708-715
    • /
    • 1998
  • The shelter effect of a porous wind fence on a triangular prism was experimentally investigated in a circulating water channel. A porous fence of porosity .epsilon.=38.5% was installed in front of the prism model. The fence and prism model were embedded in a turbulent boundary layer. The instantaneous velocity fields around the fence and prism model were measured by using the instantaneous velocity fields around the fence and prism model were measured by using the 2-frame PTV(Particle Tracking Velocimetry) system. By installing the fence in front of the prism, the recirculation flow region decreases compared with that of no fence case. The porous fence also decreases the mean velocity, turbulent intensity and turbulent kinetic energy around the prism. Especially, at the top of the prism, the turbulent kinetic energy is about half of that without the fence.

Processing Methods for the Preparation of Porous Ceramics

  • Ahmad, Rizwan;Ha, Jang-Hoon;Song, In-Hyuck
    • Journal of Powder Materials
    • /
    • v.21 no.5
    • /
    • pp.389-398
    • /
    • 2014
  • Macroporous ceramics with tailored pore size and shape could be used for well-established and emerging applications, such as molten metal filtration, biomaterial, catalysis, thermal insulation, hot gas filtration and diesel particulate filters. In these applications, unique properties of porous materials were required which could be achieved through the incorporation of macro-pores into ceramics. In this article, we reviewed the main processing techniques which can be used for the fabrication of macroporous ceramics with tailored microstructure. Partial sintering, replica templates, sacrificial fugutives, and direct foaming techniques was described here and compared in terms of microstructures and mechanical properties that could be achieved. The main focus was given to the direct foaming technique which was simple and versatile approach that allowed the fabrication of macro-porous ceramics with tailored features and properties.

Thermal Spalling and Resistance to Slag Attack in Porous High Alumina Ceramic (According to Pore Size) (고Alumina질 다공성 세라믹스의 내열충격성 및 내Slag성 (기공크기에 따른))

  • 김병훈;나용한
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.9
    • /
    • pp.747-753
    • /
    • 1993
  • The investigation was carried out to study the behaviors of the pore size and porosity, the mechanical strength, the resistance to thermal spallings and slag attacks according to particle sizes of starting raw materials in porous high Alumina ceramics. This porous ceramics have been used in processing of the clean steel by the blowing of the inert gas. The required properties in the practice are the suitable pores size, the sharp pores distribution for a uniform blowing of the gas, the strong corrosion resistance to slags and molten metals and the resistance to thermal spalling. The optimized properties in porous high alumina ceramics of the specimen No. 3 was found to be the very low slag intrusion and the superior resistance to thermal spalling because of the suitable pore size of 2.5${\mu}{\textrm}{m}$, the porosity of 30% and the high sinterability.

  • PDF

Mechanistic Model of Dryout in a Heat-Generating Porous Medium

  • Kim, Seong-Ho;Chang, Soon-Heung
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05b
    • /
    • pp.537-542
    • /
    • 1996
  • In the present work the influence of various physical parameters on the two-phase flow behavior in a self-heated porous medium has been studied using a numerical model, that is, the effects of heat generation rate, of porosity, of particle size, and of system pressure on the dryout process. To analyze the effect of these parameters, the variation of both liquid volumetric fraction and liquid axial velocity is evaluated at the steady state or at the onset of a first boiled-out region. The analysis of computational results indicate that a qualitative tendency exists between the parameters such as heat generation rate, porosity, effective particle diameter and the temporal development of the liquid volumetric fraction field up to dryout. In addition to these parameters, a variation of fluid properties such as phase density, phase viscosity due to a change of system pressure can be used for gaining insight into the nature of two-phase flow behavior up to dryout.

  • PDF