• Title/Summary/Keyword: Porous microstructures

Search Result 72, Processing Time 0.027 seconds

Processing of Porous Ceramics by Direct Foaming: A Review

  • Pokhrel, Ashish;Seo, Dong Nam;Lee, Seung Taek;Kim, Ik Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.2
    • /
    • pp.93-102
    • /
    • 2013
  • Macro porous ceramics possessing controlled microstructures and chemical compositions have increasingly proven useful in the industrial sphere. Their sintered structures have found application in both established and emerging, areas such as thermal insulation in buildings, filtration of liquids and molten materials, refractory insulation, bone scaffolds and tissue engineering. Stable ceramic foams can be formed by wet chemical methods using inorganic particles(e.g., $Al_2O_3$ or $SiO_2$). The wet foams are dried and sintered with improved porosity and mechanical properties. This review examines the different techniques used to prepare porous ceramics from ceramic foams, focusing on the explanation of this versatile method of direct foaming from the past to the present. Comparisons of the processes and the processing parameters are explained with the produced microstructures.

Relationship Between Voltage-time Characteristics and Microstructures of Tantalum Oxide Thin Films Prepared by Anodic Oxidation (양극 산화법으로 제조된 Tantalum Oxide 박막의 전압-시간 특성과 미세구조와의 연관성)

  • 정형진;윤상옥;이동헌
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.6
    • /
    • pp.443-450
    • /
    • 1991
  • Microstructures of tantalum oxide, anodic-oxidized in oxalic acid, are shown to be related to voltage-time characteristics during formation reaction. It is observed that a crystalline phase transformed from an amorphous phase is recrystallized in the presence of the high electric field within the film, and this recrystallized film has a very porous microstructure. From the results of the XRD, the nonlinearity observed after the first spark voltage is recognized to be due to the local crystallization.

  • PDF

Computer Simulation for Microstructure Development in Porous Sintered Compacts (다공질 소결체의 조직형성에 관한 컴퓨터 시뮬레이션)

  • Shin, Soon-Ki;Matsubara, Hideaki
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.4 s.287
    • /
    • pp.213-219
    • /
    • 2006
  • A Monte Carlo simulation based on Potts model in a three dimensional lattice was studied to analyze and design microstructures in porous sintered compacts such as porosity, pore size, grain (particle) size and contiguity of grains. The effect of surface energy of particles and the content of additional fine particles to coarse particles on microstructure development were examined to obtain fundamentals for material design in porous materials. It has been found that the larger surface energy enhances sintering (necking) of particles and increases contiguity and surface energy does not change pore size and grain size. The addition of fine particles also enhances sintering of particles and increases contiguity, but it has an effect on increment of pore size and grain size. Such a simulation technique can give us important information or wisdom for design of porous materials, e.g., material system with high surface energy and fine particle audition are available for higher strength and larger porosity in porous sintered compacts with applications in an automobile.

Dynamic analysis of a porous microbeam model based on refined beam strain gradient theory via differential quadrature hierarchical finite element method

  • Ahmed Saimi;Ismail Bensaid;Ihab Eddine Houalef
    • Advances in materials Research
    • /
    • v.12 no.2
    • /
    • pp.133-159
    • /
    • 2023
  • In this paper, a size-dependent dynamic investigation of a porous metal foams microbeamsis presented. The novelty of this study is to use a metal foam microbeam that contain porosities based on the refined high order shear deformation beam model, with sinusoidal shear strain function, and the modified strain gradient theory (MSGT) for the first time. The Lagrange's principle combined with differential quadrature hierarchicalfinite element method (DQHFEM) are used to obtain the porous microbeam governing equations. The solutions are presented for the natural frequencies of the porous and homogeneoustype microbeam. The obtained results are validated with the analytical methods found in the literature, in order to confirm the accuracy of the presented resolution method. The influences of the shape of porosity distribution, slenderness ratio, microbeam thickness, and porosity coefficient on the free vibration of the porous microbeams are explored in detail. The results of this paper can be used in various design formetallic foammicro-structuresin engineering.

EFFECT OF POWDER SHAPE AND SINTERING TEMPERATURE ON THE PREPARATION OF Ni-BASED POROUS METAL

  • YU-JEONG YI;MIN-JEONG LEE;HYEON-JU KIM;SANGSUN YANG;MANHO PARK;BYOUNG-KEE KIM;JUNG-YEUL YUN
    • Archives of Metallurgy and Materials
    • /
    • v.64 no.3
    • /
    • pp.917-920
    • /
    • 2019
  • Usually porous metals are known as relatively excellent characteristic such as large surface area, light, lower heat capacity, high toughness and permeability for exhaust gas filter, hydrogen reformer catalyst support. The Ni alloys have high corrosion resistance, heat resistance and chemical stability for high temperature applications. In this study, the Ni-based porous metals have been developed with Hastelloy powder by gas atomization and water atomization in order to find the effects of powder shape on porous metal. Each Hastelloy powder is pressed on disk shape of 2 mm thickness with 12 tons using uniaxial press machine. The specimens are sintered at various temperatures in high vacuum condition. The pore properties were evaluated using Porometer and microstructures were observed with SEM.