• Title/Summary/Keyword: Porous media flow model

Search Result 114, Processing Time 0.029 seconds

Thermal response of porous media cooled by a forced convective flow (강제대류에 의해 냉각되는 다공물질의 열응답 특성)

  • 백진욱;강병하;현재민
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.5
    • /
    • pp.600-609
    • /
    • 1998
  • The experimental investigation of thermal response characteristics by the air flow through the porous media has been carried out. The packed spheres of steel or glass were considered as the porous media in the present study. Temperature distributions of the fluid in the porous media as well as pressure drops through the porous media were measured. The transient temperature variations in the porous media are compared favorably with the analytical results in the high Reynolds number ranges. However, in the low Reynolds number ranges, the experimental data deviate from the analytical results, due to the dominant heat conduction penetration to the upstream direction, which is not considered in the analytical model. The cool-down response of porous media is found to be dependent upon the specific dimensionless time considering the material property and air velocity. The heat discharge process is recommended to be operated until a certain time, considering the cost efficiency.

  • PDF

A Numerical Study on Flow in Porous Structure using Non-Hydrostatic Model (비정수압 수치모형을 이용한 다공성 구조물의 유동에 관한 수치적 연구)

  • Shin, Choong Hun;Yoon, Sung Bum
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.30 no.3
    • /
    • pp.114-122
    • /
    • 2018
  • This paper introduces a non-hydrostatic wave model SWASH for simulating wave interactions with porous structures. This model calculates the flow in porous media based on volume-averaged Reynolds-averaged Navier-Stokes equations (VARANS) in ${\sigma}$-coordinate. The empirical coefficients of resistance used to account for the flow in a porous media often need to be measured or calibrated. In this study, the empirical resistance coefficients used in the model are calibrated and validated using laboratory experiments, involving dam-break flow through porous media, and solitary wave interactions with a porous structure. It is shown that the agreement between experimental and numerical results is generally satisfactory. It is also confirmed that non-hydrodynamic model, SWASH, is computationally much more efficient than the three-dimensional porous flow models based on VOF approach.

Structural and Flow Analysis for Designing Air Plate of a Fuel Cell (구조 해석과 유동 해석을 통한 연료전지 공기판 설계)

  • Park, Jung-Sun;Yang, Ji-Hae;Lee, Won-Yong
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.585-590
    • /
    • 2003
  • The distributions of mass flow rate and pressure are major factors to deside the performance of a proton exchange membrane fuel cell (PEMFC). These factors are affected by channel configuration of air plate. In this paper. structural analysis is performed to investigate deformation of porous media. Two kind of models are suggest for flow analyses. Deformed porous media and undeformed porous media are considered for air plate model. The Numerical flow analysis results with deformed porous media and undeformed porous media had some discrepancy in pressure distribution. The pressure and velocity in a working condition are numerically calculated to predict the performance of the air plates. Distributions of the parameters in the PEMFC are analyzed numerically under steady-state conditions.

  • PDF

A Numerical Study on Plate-Type Heat Exchanger Using One-Dimensional Flow Network Model and Porous-Media Model (1차원 유동 네트워크 모델 및 다공성매질 모델을 이용한 판형 열교환기의 수치적 연구)

  • Park, Jaehyun;Kim, Minsung;Min, June Kee;Ha, Man Yeong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.1
    • /
    • pp.21-28
    • /
    • 2016
  • A typical heat exchanger, found in many industrial sites, is made up of a large number of unitary cells, which causes difficulties when carrying out full-scale three-dimensional numerical simulations of the heat exchanger to analyze the aero-thermal performance. In the present study, a three-dimensional numerical study using a porous media model was carried out to evaluate the performance of the heat exchanger modelled in two different ways : full-scale and simplified. The pressure drop in the air side and gas side along with the overall heat transfer rate were calculated using a porous media model and the results were then compared to results obtained with a one-dimensional flow network model. The comparison between the results for two different geometries obtained using a porous media model and a one-dimensional flow network model shows good agreement between the simplified geometry and the one-dimensional flow network model. The full-scale geometry shows reasonable differences caused by the geometry such as sudden expansion and contraction.

Numerical analysis in oscillating flow considering orientation of porous media regenerator (다공성 재생기의 방향성을 고려한 왕복유동 수치해석)

  • Yang, Mun-Heum;Park, Sang-Jin;No, Seung-Tak
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.12
    • /
    • pp.1668-1678
    • /
    • 1997
  • Numerical analyses were performed to investigate the characteristics of regenerator in oscillating flow by using moving boundary method and Darcy model. In this work, periodic adiabatic boundary condition was suggested as the boundary condition of adiabatic part so that the effects of the thermal inertia of the wall could be considered. In carrying out numerical analyses, two models were applied and compared. One called isotropic model has the same thermal conductivity in radial and axial directions within a porous media. The other called aeolotropic model has different conductivity in each directions. Isotropic model could not show the advantage of energy reduction which needs to maintain constant wall temperature difference between heater and cooler. But aeolotropic model could simulate the reduction of energy consumption.

A Detailed Examination of Various Porous Media Flow Models for Collection Efficiency and Pressure Drop of Diesel Particulate Filter (DPF의 PM 포집효율 예측을 위한 다양한 다공성 매질 유동장 모델 해석)

  • Jung, Seung-Chai;Yoon, Woong-Sup
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.1
    • /
    • pp.78-88
    • /
    • 2007
  • In the present study a detailed examination of various porous media models for predicting filtration efficiency and pressure drop of diesel particulate filter (DPF), such as sphere-in-cell and constricted tube models, are attempted. In order for demonstrating their validities of correct estimation on permeability, geometry of property configurations common in commercial cordierite DPFs are correlated to the porous media flow models, and validations of predicted filtration efficiencies due to the use of different unit collectors are made with experiments. The result shows that the porosity, pore size and permeability of cordierite DPF can be successfully correlated by Kuwabara flow field with correction factor of 0.6. The unit collector efficiency predicted by sphere-in-cell model agrees very well with measurements in accumulation mode, whereas that by constricted tube model with significant prediction error.

Thermal Flow Analysis of an Engine Room using a Porous Media Model for Imitating Flow Rate Reduction at Outlet of Industrial Machines (다공성 매질 모델 기반 출구유량 감소 모사 기법을 이용한 산업기계용 엔진룸 열유동해석)

  • Choi, Yo Han;Yoo, Il Hoon;Lee, Chul-Hee
    • Journal of Drive and Control
    • /
    • v.19 no.1
    • /
    • pp.62-68
    • /
    • 2022
  • Considering the characteristics of industrial machines that lack vehicle-induced wind, forced convection by a cooling fan is mostly required. Therefore, numerical analysis of an engine room is usually performed to examine the cooling performance in the room. However, most engine rooms consist of a number of parts and components at specific positions, leading to high costs for numerical modeling and simulation. In this paper, a new methodology for three-dimensional computer-assisted design simplification was proposed, especially for the pile of components and parts at the engine room outlet. A porous media model and regression analysis were used to derive a meta-model for imitating the flow rate reduction at the outlet by the pile. The results showed that the fitted model was reasonable considering the coefficient of determination. The final numerical model of the engine room was then used to simulate the velocity distribution by changing the mass flow rate at the outlet. The results showed that both velocity distributions were significantly changed in each case and the meta-model was valid in imitating the flow rate reduction by some piles of components and parts.

THE TRANSPORT OF NUCLEAR CONTAMINATION IN FRACTURED POROUS MEDIA

  • Jim-Douglas, Jr.;Anna M.Spagnuolo
    • Journal of the Korean Mathematical Society
    • /
    • v.38 no.4
    • /
    • pp.723-761
    • /
    • 2001
  • The objects of this paper are to formulated a model for the transport of a chain of radioactive waste products in a fractured porous medium, to devise an effective and efficient numerical method for approximating the solution of the model, and to demonstrated the convergence of the numerical method. The formulation begins from a model in an unfractured (single porosity) medium, passes through a double porosity model in a fractured medium, and ends with a modified single porosity model that takes the relevant time scales of the flow and the nuclear decay.

  • PDF

A NUMERICAL STUDY ON THE CHARACTERISTIC OF FLOW DISTRIBUTION IN THE CHANNEL OF PLATE HEAT EXCHANGER FOR VARIOUS NUMBER OF CHANNELS (판형 열교환기의 전열판 개수에 따른 유량 분배 특성에 대한 수치해석)

  • Lee, Na-Ri;Jung, Jae-Hyuk;Hur, Nahm-Keon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.129-134
    • /
    • 2009
  • In the present study, the characteristic of flow distribution in the channel of a plate heat exchanger is investigated numerically. In order to accomplish the efficient and fast analyses of the flow characteristics in the channel, a semi-microscopic analysis has been performed using a porous media model. For semi-microscopic analysis using porous media, the flow resistance coefficients are obtained through the result of pressure drop in the experimental data. The results showed that the variation of mass flow rate, geometry and chevron angle strongly depend on the flow distribution in the channel. Particularly, the chevron angle is most important factor for uniform flow distribution.

  • PDF

Modeling of coupled THMC processes in porous media

  • Kowalsky, Ursula;Bente, Sonja;Dinkler, Dieter
    • Coupled systems mechanics
    • /
    • v.3 no.1
    • /
    • pp.27-52
    • /
    • 2014
  • For landfill monitoring and aftercare, long-term prognoses of emission and deformation behaviour are required. Landfills may be considered as heterogeneous porous soil-like structures, in which flow and transport processes of gases and liquids interact with local material degradation and mechanical deformation of the solid skeleton. Therefore, in the framework of continuous porous media mechanics a model is developed that permits the investigation of coupled mechanical, hydraulical and biochemical processes in municipal solid waste landfills.