• 제목/요약/키워드: Porous Scaffold

검색결과 86건 처리시간 0.018초

Effect of polymer concentration in cryogelation of gelatin and poly (vinyl alcohol) scaffolds

  • Ceylan, Seda;Demir, Didem;Gul, Gulsah;Bolgen, Nimet
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • 제4권1호
    • /
    • pp.1-8
    • /
    • 2019
  • The aim of this study was to investigate the effect of total polymer concentration on the chemical structure, morphology of pores, porosity, swelling ratio, degradation of gelatin-poly (vinyl alcohol) (Gel-PVA) cryogel scaffolds. Porous cryogels were prepared with cryogelation technique by using glutaraldehyde as a crosslinker. Functional group composition of cryogels after crosslinking was investigated by Fourier Transform Infrared (FTIR). The morphology of cryogels was characterized via scanning electron microscopy (SEM) and porosity analysis. All of the cryogels had a porous structure with an average pore size between $45.58{\pm}14.28$ and $50.14{\pm}4.26{\mu}m$. The cryogels were biodegradable and started to degrade in 14 days. As the polymer concentration increased the swelling ratio, the porosity and the degradation rate decreased. Spongy and mechanically stable Gel-PVA cryogels, with tunable properties, can be potential candidates as scaffolds for tissue engineering applications.

가토 두개골 결손 모델에서 실크단백과 나노하이드록시아파타이트, 옥수수 녹말 복합물을 이용한 골 이식재 개발 (The Effect of Silk Fibroin/Nano-hydroxyapatite/Corn Starch Composite Porous Scaffold on Bone Regeneration in the Rabbit Calvarial Defect Model)

  • 박용태;권광준;박영욱;김성곤;김찬우;조유영;권해용;강석우
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제33권6호
    • /
    • pp.459-466
    • /
    • 2011
  • Purpose: This study evaluated the capability of bone formation with silk fibroin/nano-hydroxyapatite/corn starch composite scaffold as a bone defect replacement matrix when grafted in a calvarial bone defect of rabbits $in$ $vivo$. Methods: Ten New Zealand white rabbits were used for this study and bilateral round-shaped defects were formed in the parietal bone (diameter: 8.0 mm). The silk fibroin 10% nano-hydroxyapatite/30% corn starch/60% composite scaffold was grafted into the right parietal bone (experimental group). The left side (control group) was grafted with a nano-hydroxyapatite (30%)/corn starch (70%) scaffold. The animals were sacrificed at 4 weeks and 8 weeks. A micro-computerized tomography (${\mu}CT$) of each specimen was taken. Subsequently, the specimens were decalcified and stained with Masson's trichrome for histological and histomorphometric analysis. Results: The average ${\mu}CT$ and histomorphometric measures of bone formation were higher in the control group than in the experimental group at 4 weeks and 8 weeks after surgery though not statistically significant ($P$ >0.05). Conclusion: The rabbit calvarial defect was not successfully repaired by silk fibroin/nano-hydroxyapatite/corn starch composite scaffold and may have been due to an inflammatory reaction caused by silk powder. In the future, the development of composite bone graft material based on various components should be performed with caution.

Polydioxanone/pluronic F127 담체에 유입된 골막기원세포의 조골활성 (OSTEOGENIC ACTIVITY OF CULTURED HUMAN PERIOSTEAL-DERIVED CELLS IN A THREE DIMENSIONAL POLYDIOXANONE/PLURONIC F127 SCAFFOLD)

  • 이진호;오세행;박봉욱;하영술;김덕룡;김욱규;김종렬;변준호
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제31권6호
    • /
    • pp.478-484
    • /
    • 2009
  • Three-dimensional porous scaffolds play an important role in tissue engineering strategies. They provide a void volume in which vascularization, new tissue formation, and remodeling can occur. Like any grafted materials, the ideal scaffold for bone tissue engineering should be biocompatible without causing an inflammatory response. It should also possess biodegradability, which provides a suitable three-dimensional environment for the cell function together with the capacity for gradual resorption and replacement by host bone tissue. Various scaffolds have already been developed for bone tissue engineering applications, including naturally derived materials, bioceramics, and synthetic polymers. The advantages of biodegradable synthetic polymers include the ability to tailor specific functions. The purpose of this study was to examine the osteogenic activity of periosteal-derived cells in a polydioxanone/pluronic F127 scaffold. Periosteal-derived cells were successfully differentiated into osteoblasts in the polydioxanone/pluronic F127 scaffold. ALP activity showed its peak level at 2 weeks of culture, followed by decreased activity during the culture period. Similar to biochemical data, the level of ALP mRNA in the periosteal-derived cells was also largely elevated at 2 weeks of culture. The level of osteocalcin mRNA was gradually increased during entire culture period. Calcium content was detactable at 1 week and increased in a time-dependent manner up to the entire duration of culture. Our results suggest that polydioxanone/pluronic F127 could be a suitable scaffold of periosteal-derived cells for bone tissue engineering.

Pharmaceutical Potential of Gelatin as a pH-responsive Porogen for Manufacturing Porous Poly(d,l-lactic-co-glycolic acid) Microspheres

  • Kim, Hyun-Uk;Park, Hong-Il;Lee, Ju-Ho;Lee, Eun-Seong;Oh, Kyung-Taek;Yoon, Jeong-Hyun;Park, Eun-Seok;Lee, Kang-Choon;Youn, Yu-Seok
    • Journal of Pharmaceutical Investigation
    • /
    • 제40권4호
    • /
    • pp.245-250
    • /
    • 2010
  • Porous poly(lactic-co-glycolic acid) microspheres (PLGA MS) have been utilized as an inhalation delivery system and a matrix scaffold system for tissue engineering. Here, gelatin (type A) is introduced as an extractable pH-responsive porogen, which is capable of controlling the porosity and pore size of PLGA microspheres. Porous PLGA microspheres were prepared by a water-in-oil-in-water ($w_1/o/w_2$) double emulsification/solvent evaporation method. The surface morphology of these microspheres was examined by varying pH (2.0~11.0) of water phases, using scanning electron microscopy (SEM). Also, their porosity and pore size were monitored by altering acidification time (1~5 h) using a phosphoric acid solution. Results showed that the pore-forming capability of gelatin was optimized at pH 5.0, and that the surface pore-formation was not significantly observed at pHs of < 4.0 or > 8.0. This was attributable to the balance between gel-formation by electrostatic repulsion and dissolution of gelatin. The appropriate time-selection between PLGA hardening and gelatin-washing out was considered as a second significant factor to control the porosity. Delaying the acidification time to ~5 h after emulsification was clearly effective to make pores in the microspheres. This finding suggests that the porosity and pore size of porous microspheres using gelatin can be significantly controlled depending on water phase pH and gelatin-removal time. The results obtained in this study would provide valuable pharmaceutical information to prepare porous PLGA MS, which is required to control the porosity.

Hierarchical porous carbon nanofibers via electrospinning

  • Raza, Aikifa;Wang, Jiaqi;Yang, Shan;Si, Yang;Ding, Bin
    • Carbon letters
    • /
    • 제15권1호
    • /
    • pp.1-14
    • /
    • 2014
  • Carbon nanofibers (CNFs) with diameters in the submicron and nanometer range exhibit high specific surface area, hierarchically porous structure, flexibility, and super strength which allow them to be used in the electrode materials of energy storage devices, and as hybrid-type filler in carbon fiber reinforced plastics and bone tissue scaffold. Unlike catalytic synthesis and other methods, electrospinning of various polymeric precursors followed by stabilization and carbonization has become a straightforward and convenient way to fabricate continuous CNFs. This paper is a comprehensive and brief review on the latest advances made in the development of electrospun CNFs with major focus on the promising applications accomplished by appropriately regulating the microstructural, mechanical, and electrical properties of as-spun CNFs. Additionally, the article describes the various strategies to make a variety of carbon CNFs for energy conversion and storage, catalysis, sensor, adsorption/separation, and biomedical applications. It is envisioned that electrospun CNFs will be the key materials of green science and technology through close collaborations with carbon fibers and carbon nanotubes.

3D Micromorphology Producing within Poly(lactic acid) Skeleton Using Room-Temperature Ionic Liquids: From Particulate, Fibrous or Porous Scaffolds to Beads

  • Shin, Ueon-Sang;Kim, Jong-Gyu
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권7호
    • /
    • pp.2295-2298
    • /
    • 2012
  • We describe herein a three-dimensionally diverse micropatterning of poly(lactic acid), as a biopolymer, using 1-butyl-3-methylimidazolium-based room-temperature ionic liquids (bmim-based RTILs), [bmim]X (X = $SbF_6$, $PF_6$, $NTf_2$, Cl). Utilizing the hydrophobic bmim-based RTILs, [bmim]X (X = $SbF_6$, $PF_6$, $NTf_2$) and a phase separation technique, we were able to produce white and opaque membranes with a three-dimensional structure closely packed with particles ($10-50{\mu}m$ in diameter). The particlulate structure, made by the assistance of [bmim]$NTf_2$ and DCM, interestingly transformed to a fibrous structure by using a cosolvent, e.g., DCM/$CF_3CH_2OH$. When we used an increased amount of [bmim]$NTf_2$, the particles were effectively detached and macrosized ($100-500{\mu}m$ in diameter) and the oval-shaped beads were obtained in a powder form. By varying the counter-anion type of the imidazolium-based RTIL, for example from $NTf_2^-$ to $Cl^-$, the particulate 3D-morphology was once more transformed to a porous structure. These reserch results could be potentially useful, as a method to fabricate particulate scaffolds, fibrous or porous scaffolds, and beads as a biopolymer device in diverse fields including drug delivery, tissue regeneration, and biomedical engineering.

Fabrication and Characterization of Porous Hydroxyapatite Scaffolds

  • Kim, Min-Sung;Park , Ih-Ho;Lee, Byong-Taek
    • 한국재료학회지
    • /
    • 제19권12호
    • /
    • pp.680-685
    • /
    • 2009
  • Using a polyurethane foam replica method, porous hydroxyapatite scaffolds (PHS) were fabricated using conventional and microwave sintering techniques. The microstructure and material properties of the PHS, such as pore size, grain size, relative density and compressive strength, were investigated at different sintering temperatures and holding times to determine the optimal sintering conditions. There were interconnected pores whose sizes ranged between about 300 ${\mu}m$ and 700 ${\mu}m$. At a conventional sintering temperature of 1100$^{\circ}C$, the scaffold had a porous microstructure, which became denser and saw the occurrence of grain growth when the temperature was increased up to 1300$^{\circ}C$. In the case of microwave sintering, even at low sintering temperature and short holding time the microstructure was much denser and had smaller grains. As the holding time of the microwave sintering was increased, higher densification was observed and also the relative density and compressive strength increased. The compressive strength values of PHS were 2.3MPa and 1.8MPa when conventional and microwave sintering was applied at 1300$^{\circ}C$, respectively.

Geometric and mechanical properties evaluation of scaffolds for bone tissue applications designing by a reaction-diffusion models and manufactured with a material jetting system

  • Velasco, Marco A.;Lancheros, Yadira;Garzon-Alvarado, Diego A.
    • Journal of Computational Design and Engineering
    • /
    • 제3권4호
    • /
    • pp.385-397
    • /
    • 2016
  • Scaffolds are essential in bone tissue engineering, as they provide support to cells and growth factors necessary to regenerate tissue. In addition, they meet the mechanical function of the bone while it regenerates. Currently, the multiple methods for designing and manufacturing scaffolds are based on regular structures from a unit cell that repeats in a given domain. However, these methods do not resemble the actual structure of the trabecular bone which may work against osseous tissue regeneration. To explore the design of porous structures with similar mechanical properties to native bone, a geometric generation scheme from a reaction-diffusion model and its manufacturing via a material jetting system is proposed. This article presents the methodology used, the geometric characteristics and the modulus of elasticity of the scaffolds designed and manufactured. The method proposed shows its potential to generate structures that allow to control the basic scaffold properties for bone tissue engineering such as the width of the channels and porosity. The mechanical properties of our scaffolds are similar to trabecular tissue present in vertebrae and tibia bones. Tests on the manufactured scaffolds show that it is necessary to consider the orientation of the object relative to the printing system because the channel geometry, mechanical properties and roughness are heavily influenced by the position of the surface analyzed with respect to the printing axis. A possible line for future work may be the establishment of a set of guidelines to consider the effects of manufacturing processes in designing stages.

생분해성 다공질 Calcium Metaphosphate 블록의 조직적합성에 관한 연구 (Biocompatibility and Bone Conductivity of Porous Calcium Metaphosphate Blocks)

  • 이용무;김석영;신승윤;구영;류인철;정종평
    • Journal of Periodontal and Implant Science
    • /
    • 제28권4호
    • /
    • pp.559-568
    • /
    • 1998
  • direct bone apposition during bone remodelling. To address these problem, we developed a new ceramic, calcium metaphosphate(CMP), and report herein the biologic response to CMP in subcutaneous tissue, muscle and bone. Porous CMP blocks were prepared by condensation of anhydrous $Ca(H_2PO_4)_2$ to form non-crystalline $Ca(PO_3)_2$. Macroporous scaffolds were made using a polyurethane sponge method. CMP block possesses a macroporous structure with approximate pore size range of 0.3-1mm. CMP blocks were implanted in 8mm sized calvarial defect, subcutaneous tissue and muscle of 6 Newzealand White rabbits and histologic observation were performed at 4 and 6 weeks later. CMP blocks in subcutaneous tissue and muscle were well adapted without any adverse tissue reaction and resorbed slowly and spontaneously. Histologic observation of calvarial defect at 4 and 6 weeks revealed that CMP matrix were mingled with and directly apposed to new bone without any intervention of fibrous connective tissue. CMP blocks didn't show any adverse tissue reaction and resorbed spontaneously also in calvarial defect. This result revealed that CMP had a high affinity for bone and was very biocompatible. From this preliminary result, it was suggested that CMP was a promising ceramic as a bone substitute and tissue engineering scaffold for bone formation.

  • PDF

삼차부틸알코올 기반 동결주조 공정을 이용한 PMMA 첨가 다공질 수산화아파타이트 지지체의 제조 및 특성 평가 (Fabrication and characterization of porous hydroxyapatite scaffolds with PMMA addition using tertiary-butyl alcohol based freeze casting method)

  • 김태림;윤석영;허진영;이치승
    • 한국결정성장학회지
    • /
    • 제27권5호
    • /
    • pp.235-242
    • /
    • 2017
  • 기공 제어가 가능한 다공질 인공 지지체를 제조하기 위해 HA 분말에 기공형성제 역할을 하는 PMMA 분말을 첨가하여 TBA를 용매로 한 slurry를 합성한 후 동결주조와 소결을 거쳐 주상형 기공채널이 상호 연결되어 있는 다공질 HA 지지체를 제조하였다. PMMA 분말의 첨가량에 따른 HA 지지체의 결정구조는 XRD로 측정하였고 SEM을 통하여 지지체의 표면 및 내부 단면을 관찰하였는데, 소결과정에서 PMMA의 탈지가 지지체의 내부구조와 HA 분말의 결정성에 영향을 미치는 것으로 결과가 나타났다. 또한 지지체의 물리적 및 기계적 특성을 평가하여 기공형성제의 첨가량을 조절함으로써 기공률 및 기공 크기와 압축 강도의 제어가 가능하였다. 본 연구 결과, HA 지지체가 천연 해면골과 구조 및 특성이 유사하였으며 이를 통해 PMMA 첨가 다공질 HA 지지체가 조직공학용 인공 골지지체로서 자가골을 대체하여 사용이 가능한 것으로 판단된다.