• Title/Summary/Keyword: Porous Powder

Search Result 506, Processing Time 0.031 seconds

A Study on the Electrochemical Properties of Porous Carbon Electrode according to the Organic Solvent Contents (유기용매의 함량비에 따른 다공성 탄소전극의 전기화학적 특성 연구)

  • Lim, Jung-Ae;Choi, Jae-Hwan
    • Applied Chemistry for Engineering
    • /
    • v.19 no.2
    • /
    • pp.185-190
    • /
    • 2008
  • In order to increase the surface area of electrodes for electrosorption, porous carbon electrodes were fabricated by a wet phase inversion method. A carbon slurry consisting of a mixture of activated carbon powder (ACP), polyvinylidene fluoride (PVdF), and N-methyl-2-pyrrolidone (NMP) as a solvent was cast directly on a graphite sheet. The cast film was then immersed in pure water for phase inversion. The physical and electrochemical properties of the electrodes were investigated using scanning electron microscopy (SEM), porosimetry, and cyclic voltammetry. The SEM images verified that the pores of various sizes were formed uniformly on the electrode surface. The average pore sizes determined for the electrodes fabricated with various NMP contents ranged from 64.2 to 82.4 nm and the size increased as the NMP content increased. All of the voltammograms showed a typical behavior of charging and discharging characteristic at the electric double layer. The electrical capacitance ranged from 3.88 to $5.87F/cm^2$ depending on the NMP contents, and the electrical capacitance increased as the solvent content decreased. The experimental results showed that the solvent content is an important variable controlling pore size and ultimately the capacitance of the electrode.

Synthesis of AlPO4-type Mesoporous Materials Using Alum Sludge (Alum 슬러지를 이용한 AlPO4-계 다공성 물질의 합성)

  • Kang, Kwang Cheol;Kim, Young Ho;Kim, Jin-man;Lee, Choul Ho;Rhee, Seog Woo
    • Applied Chemistry for Engineering
    • /
    • v.22 no.2
    • /
    • pp.173-177
    • /
    • 2011
  • In this study, the formation of $AlPO_4$-type porous materials from alum sludge was investigated. The materials were synthesized by the reaction of aluminum hydroxide and phosphoric acid with an organic template. Cationic surfactant, natural humic acid, and amino acids were used for the organic template. The residual organic templates were removed by calcination at $600^{\circ}C$ in the air. Powder X-ray diffraction patterns showed the charicteristic patterns of the $AlPO_4$-type porous materials. The morphology of the material was examined using a scanning electron microscopy. The coordination environment of $Al^{3+}$ ion was investigated by $^{27}Al$ MAS NMR technique. Both tetrahedrally and octahedrally coordinated$Al^{3+}$ ions were found in the as-synthesized samples while all $Al^{3+}$ ions were tetrahedrally coordinated in the calcined products. The development of mesopore in the solid material was confirmed by the measurement of BET specific surface area. Finally, they were used for removal of toxic formaldehyde from the air and the formaldehyde molecules were adsorbed on the surface of pores. In conclusion, $AlPO_4$-type porous materials from alum sludge might be applicable in the removal of toxic volatile organic compounds from the air.

Effects of Stoichiometry on Properties of NiAl Intermetallics coated on Carbon Steel through Combustion Synthesis (연소합성 코팅된 NiAl 금속간화합물의 화학양론이 미끄럼 마모특성에 미치는 영향)

  • Lee, Han-Young;Lee, Jae-Sung
    • Tribology and Lubricants
    • /
    • v.36 no.3
    • /
    • pp.124-132
    • /
    • 2020
  • The effect of the stoichiometry on the sliding wear properties of NiAl coatings has been investigated. Three different powder mixtures with the compositions of Ni-50at%Al, Ni-54at%Al and Ni-42at%Al were diepressed respectively, and which were subsequently coated on mild steel through combustion synthesis in an induction heating system. Sliding wear behavior of the coatings was examined against an alloyed tool steel using a pin-on-disc type sliding wear test machine. As results, it could be seen that powder mixture(Ni-54at%Al) with displaying Al-rich deviations from the stoichiometry of NiAl(Ni-50at%Al) was promoted the most the synthetic reactivity. The microstructure of the coating layer with the compositions of Ni-54at%Al exhibits the porous NiAl single phase structure. However, the microstructure of the coating layer of the compositions of Ni-42at%Al exhibits the denser multi-phase structure containing several intermediate phases in addition to NiAl. Densification of the coating layer was enhanced by increasing the reacting temperature. On the other hand, the wear properties of the coating layers showed that the wear mode at speeds of around 1 m/s was severe wear, regardless of the stoichiometry and reacting temperature. However, wear properties of coating layer with the compositions of Ni-42at%Al were superior to those of coating layer with the compositions of Ni-54at%Al. This would be attributed by the fact that coating layer with the compositions of Ni-42at%Al develops little void and much intermediate phases with high strength.

Photoluminescence and Long-phosphorescent Characteristics of SrAl2O4:Eu2+,Dy3+ Phosphor by Glycine-nitrate Combustion Method (글리신-질산염 연소법으로 합성된 SrAl2O4:Eu2+,Dy3+ 형광체의 발광 및 장잔광 특성)

  • Lee, Young-Ki;Kim, Jung-Yeul;Lee, You-Kee
    • Korean Journal of Materials Research
    • /
    • v.20 no.7
    • /
    • pp.364-369
    • /
    • 2010
  • A $SrAl_2O_4:Eu^{2+},Dy^{3+}$ phosphor powder with stuffed tridymite structure was synthesized by glycine-nitrate combustion method. The luminescence, formation process and microstructure of the phosphor powder were investigated by means of X-ray diffraction (XRD), scanning electron microscopy (SEM) and photoluminescence spectroscopy (PL). The XRD patterns show that the as-synthesized $SrAl_2O_4:Eu^{2+},Dy^{3+}$ phosphor was an amorphous phase. However, a crystalline $SrAl_2O_4 $ phase was formed by calcining at $1200^{\circ}C$ for 4h. From the SEM analysis, also, it was found that the as-synthesized $SrAl_2O_4:Eu^{2+},Dy^{3+}$ phosphor was in irregular porous particles of about 50 ${\mu}m$, while the calcined phosphor was aggregated in spherical particles with radius of about 0.5 ${\mu}m$. The emission spectrum of as-synthesized $SrAl_2O_4:Eu^{2+},Dy^{3+}$ phosphor did not appear, due to the amorphous phase. However, the emission spectrum of the calcined phosphor was observed at 520 nm (2.384eV); it showed green emission peaking, in the range of 450~650 nm. The excitation spectrum of the $SrAl_2O_4:Eu^{2+},Dy^{3+}$ phosphor exhibits a maximum peak intensity at 360 nm (3.44eV) in the range of 250~480 nm. After the removal of the pulse Xe-lamp excitation (360 nm), also, the decay time for the emission spectrum was very slow, which shows the excellent longphosphorescent property of the phosphor, although the decay time decreased exponentially.

Characteristics of Plasma Electrolytic Oxidation Coatings on Mg-Zn-Y Alloys Prepared by Gas Atomization (가스 분사법으로 제조한 Mg-Zn-Y 합금의 플라즈마 전해 산화 피막 특성에 관한 연구)

  • Chang, Si-Young;Cho, Han-Gyoung;Lee, Du-Hyung;Kim, Taek-Soo
    • Journal of Powder Materials
    • /
    • v.14 no.6
    • /
    • pp.372-379
    • /
    • 2007
  • The microstructure, mechanical and electrochemical properties of plasma electrolytic coatings (PEO) coatings on Mg-4.3 wt%Zn-1.0 wt%Y and Mg-1.0 wt%Zn-2.0 wt%Y alloys prepared by gas atomization, followed by compaction at 320 for 10 min under the pressure of 700 MPa and sintering at 380 and 420 respectively for 24 h, were investigated, which was compared with the cast Mg-1.0 wt%Zn alloy. All coatings consisting of MgO and $Mg_2SiO_4$ oxides showed porous and coarse surface features with some volcano top-like pores distributed disorderly and cracks between pores. In particular, the surface of coatings on Mg-1.0 wt%Zn-2.0 wt%Y alloy showed smaller area of pores and cracks compared to the Mg-4.3 wt%Zn-1.0 wt%Y and Mg-1.0 wt%Zn alloys. The cross section micro-hardness of coatings on the gas atomized Mg-Zn-Y alloys was higher than that on the cast Mg-1.0 wt%Zn alloy. Additionally, the coated Mg-1.0 wt%Zn-2.0 wt%Y alloy exhibited the best corrosion resistance in 3.5%NaCl solution. It could be concluded that the addition of Y has a beneficial effect on the formation of protective and hard coatings on Mg alloys by plasma electrolytic oxidation treatment.

Study of Color Evolution by Silica Coating and Etching based Morphological Control of α-FeOOH (실리카 코팅과 에칭에 의한 α-FeOOH의 색상변화 연구)

  • Lee, NaRi;Yu, Ri;Kim, YooJin
    • Journal of Powder Materials
    • /
    • v.25 no.5
    • /
    • pp.379-383
    • /
    • 2018
  • Silica is used in shell materials to minimize oxidation and aggregation of nanoparticles. Particularly, porous silica has gained attention because of its performance in adsorption, catalysis, and medical applications. In this study, to investigate the effect of the density of the silica coating layer on the color of the pigment, we arbitrarily change the structure of a silica layer using an etchant. We use NaOH or $NH_4OH$ to etch the silica coating layer. First, we synthesize ${\alpha}-FeOOH$ for a length of 400 nm and coat it with TEOS to fabricate particles with a 50 nm coating layer. The coating thickness is then adjusted to 30-40 nm by etching the silica layer for 5 h. Four different shapes of ${\alpha}-FeOOH$ with different colors are measured using UV-vis light. From the color changes of the four different shapes of ${\alpha}-FeOOH$ features during coating or etching, the $L^*$ value is observed to increase and brighten the overall color, and the $b^*$ value increases to impart a clear yellow color to the pigment. The brightest yellow color was that coated with silica; if the sample is etched with NaOH or $NH_4OH$, the $b^*$ value can be controlled to study the yellow colors.

Characteristic Evaluation of the Fe-Al Alloy Preform Fabrication by Reactive Sintering Process for the Al Matrix Composites. (반응소결법으로 제조한 Al기 복합재용 Fe-Al합금 예비성형체의 특성평가)

  • Choi, Dap-Chon;Park, Sung-Hyuk;Joo, Hyung-Gon
    • Journal of Korea Foundry Society
    • /
    • v.19 no.6
    • /
    • pp.493-500
    • /
    • 1999
  • Squeeze casting was used for fabricating a light metal base composite having high strength and wearresistance. Reactive sintering was used to prepare the preform of Squeeze casting. To utilize Fe-Al intermetallic compounds and SiC particle as a reinforcement, there needs to prepare Fe-Al mixed powder at 50, 60, 70at.%Al, and add SiC powder to the above mixture at 4, 7, 16, 24wt.%. The prepared mixture with SiC was reactive sintered in a tube furnace at $660^{\circ}C$ to get a porous hybrid preform of intermetallic compound and SiC. The preform prepared above was placed in a metal mold, preheated at $660^{\circ}C$ AC4C matrix was injected into the mold with the temperature of the melt at $610^{\circ}C$ After these processes, 66MPa was applied to the mold for 5 minute to finish the whole procedure. The maximum reaction temperature was increased with the increased Al amount, but decreased with the increased SiC amount. The density of the preform was decreased with SiC amount increase in the compacts due to swelling of the preform. An optical microscope was applied to observe the micro structure and the dispersion of the reinforcements. To analyze phases, We utilized XRD, EDS. Hardness test were chosen to get the information of mechanical properties. There were no significant changes in micro structure between the composite and preform. However, it was shown that uniform dispersion of the reinforcers and complete infiltration of the melt into the preform were achieved through the procedure of the squeeze casting. It was observed that the hardness of the composite is decreased with increased SiC amount, resulting from the volumetric expansion of the preform.

  • PDF

Prediction of the effective thermal conductivity of microsphere insulation

  • Jin, Lingxue;Park, Jiho;Lee, Cheonkyu;Seo, Mansu;Jeong, Sangkwon
    • Progress in Superconductivity and Cryogenics
    • /
    • v.16 no.1
    • /
    • pp.36-41
    • /
    • 2014
  • Since glass microsphere has high crush strength, low density and small particle size, it becomes alternative thermal insulation material for cryogenic systems, such as storage and transportation tank for cryogenic fluids. Although many experiments have been performed to verify the effective thermal conductivity of microsphere, prediction by calculation is still inaccurate due to the complicated geometries, including wide range of powder diameter distribution and different pore sizes. The accurate effective thermal conductivity model for microsphere is discussed in this paper. There are four mechanisms which contribute to the heat transfer of the evacuated powder: gaseous conduction ($k_g$), solid conduction ($k_s$), radiation ($k_r$) and thermal contact ($k_c$). Among these components, $k_g$ and $k_s$ were calculated by Zehner and Schlunder model (1970). Other component values for $k_c$ and $k_r$, which were obtained from experimental data under high vacuum conditions were added. In this research paper, the geometry of microsphere was simplified as a homogeneous solid sphere. The calculation results were compared with previous experimental data by R. Wawryk (1988), H. S. Kim (2010) and the experiment of this paper to show good agreement within error of 46%, 4.6% and 17 % for each result.

Milk Fat Substitution by Microparticulated Protein in Reduced-fat Cheese Emulsion: The Effects on Stability, Microstructure, Rheological and Sensory Properties

  • Urgu, Muge;Turk, Aylin;Unluturk, Sevcan;Kaymak-Ertekin, Figen;Koca, Nurcan
    • Food Science of Animal Resources
    • /
    • v.39 no.1
    • /
    • pp.23-34
    • /
    • 2019
  • Fat reduction in the formulation of cheese emulsion causes problems in its flowability and functional characteristics during spray-dried cheese powder production. In order to eliminate these problems, the potential of using microparticulated whey protein (MWP) in cheese emulsions was examined in this study. Reduced-fat white-brined cheese emulsions (RF) with different dry-matters (DM) (15%, 20%, and 25% excluding emulsifying salt) were produced using various MWP concentrations (0%-20% based on cheese DM of emulsion). Their key characteristics were compared to full-fat cheese emulsion (FF). MWP addition had no influence on prevention of the phase separation observed in the instable group (RF 15). The most notable effect of using MWP was a reduction in apparent viscosity of RF which significantly increased by fat reduction. Moreover, increasing the amount of MWP led to a decrease in the values of consistency index and an increase in the values of flow behavior index. On the other hand, using high amounts of MWP made the emulsion more liquid-like compared to full-fat counterpart. MWP utilization also resulted in similar lightness and yellowness parameters in RF as their full-fat counterparts. MWP in RF increased glossiness and flowability scores, while decreased mouth coating scores in sensory analyses. Fat reduction caused a more compact network, while a porous structure similar to FF was observed with MWP addition to RF. In conclusion, MWP showed a good potential for formulation of reduced-fat cheese emulsions with rheological and sensorial characteristics suitable to be used as the feeding liquid in the spray drying process.

Effect of carbonization temperature of AC/C composite electrode on electro double layer capacitor (탄화온도가 상이한 활성탄소 복합제 전극이 전기이중층 케페시터의 층방전 특성에 미치는 영향)

  • Jo, Young-Keun;Jung, Doo-Hwan;Kim, Chang-Soo;Park, So-Jin
    • Proceedings of the KIEE Conference
    • /
    • 1999.07d
    • /
    • pp.1821-1823
    • /
    • 1999
  • Carbon is an attractive material on electro double capacitor which depend on charge storage in the electrode/electrolyte interfacial double layer. Carbonaceous material for double layer capacitor can be obtained from carbon powder, fiber, film and porous carbon sheet. The capacitance of electrodes using an activated carbon was influenced by a filling density of the carbon, thickness and internal resistance of the electrode. In this study. to reduce internal resistance and increase electric conductivity of the electrode. activated carbon/carbon(AC/C) composite electrode was fabricated. The capacitors which have energy densities of 68F/g(at $30^{\circ}C$), 109F/g(at $60^{\circ}C$) and $68F/cm^3$(at $30^{\circ}C$), $111F/cm^3$(at $60^{\circ}C$) were fabricated by using AC/C composite electrodes.

  • PDF