• Title/Summary/Keyword: Porous Ni

Search Result 218, Processing Time 0.026 seconds

High-valence Mo doping for promoted water splitting of Ni layered double hydroxide microcrystals

  • Kyoungwon Cho;Seungwon Jeong;Je Hong Park;Si Beom Yu;Byeong Jun Kim;Jeong Ho Ryu
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.33 no.2
    • /
    • pp.78-82
    • /
    • 2023
  • The oxygen evolution reaction (OER) is the primary challenge in renewable energy storage technologies, specifically electrochemical water splitting for hydrogen generation. We report effects of Mo doping into Ni layered double hydroxide (Ni-LDH) microcrystal on electrocatalytic activities. In this study, Mo doped Ni-LDH were grown on three-dimensional porous nicekl foam (NF) by a facile solvothermal method. Homogeneous LDH structure on the NF was clearly observed. However, the surface microstructure of the nickel foam began to be irregular and collapsed when Mo precursor is doped. Electrocatalytic OER properties were analyzed by Linear sweep voltammetry (LSV) and Electrochemical impedance spectroscopy (EIS). The amount of Mo doping used in the electrocatalytic reaction was found to play a crucial role in improving catalytic activity. The optimum Mo amount introduced into the Ni LDH was discussed with respect to their OER performance.

Properties of LiNiO2 Powders Prepared by Spray Pyrolysis Process (분무열분해 공정에 의해 합성된 LiNiO2 분말의 특성)

  • Ju, Seo-Hee;Kang, Yun-Chan
    • Journal of the Korean Electrochemical Society
    • /
    • v.11 no.4
    • /
    • pp.297-303
    • /
    • 2008
  • $LiNiO_2$ cathode powders with fine size have been synthesized by spray pyrolysis from the spray solution with citric acid and ethylene glycol. The as-prepared powders with spherical shape, porous structure and micron size turned into $LiNiO_2$ powders with micron size and regular morphology after post-treatment at $800^{\circ}C$. The initial discharge capacities of the $LiNiO_2$ powders changed from 199 to 171mAh/g when the concentrations of the citric acid and ethylene glycol added to the spray solutions were changed from 0 to 1 M. The maximum initial discharge capacity of the $LiNiO_2$ powders obtained from the spray solution with citric acid and ethylene glycol was 198 mAh/g when the lithium component added to the spray solution was 6 mol% excess of the stoichiometric amount. The discharge capacities of the fine-sized $LiNiO_2$ powders dropped from 198 to 163 mAh/g by the 30 th cycle at a current density of 0.1 C.

Synthesis of self-aligned carbon nanotubes on a Ni particles using Chemical Vapour Deposition

  • Park, Gyu-Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.64-64
    • /
    • 2000
  • Since its discovery in 1991, the carbon nanotube has attracted much attention all over the world; and several method have been developed to synthesize carbon nanotubes. According to theoretical calculations, carbon nanotubes have many unique properties, such as high mechanical strength, capillary properties, and remarkable electronical conductivity, all of which suggest a wide range of potential applications in the future. Here we report the synthesis in the catalytic decomposition of acetylene at ~65 $0^{\circ}C$ over Ni deposited on SiO2, For the catalyst preparation, Ni was deposited to the thickness of 100-300A using effusion cell. Different approaches using porous materials and HF or NH3 treated samples have been tried for synthesis of carbon nanotubes. It is decisive step for synthesis of carbon nanotubes to form a round Ni particles. We show that the formation of round Ni particles by heat treatment without any pre-treatment such as chemical etching and observe the similar size of Ni particles and carbon nanotubes. Carbon nanotubes were synthesized by chemial vapour deposition ushin C2H2 gas for source material on Ni coated Si substrate. Ni film gaving 20~90nm thickness was changed into Ni particles with 30~90nm diameter. Heat treatment of Ni fim is a crucial role for the growth of carbon nanotube, High-resolution transmission electron microscopy images show that they are multi-walled nanotube. Raman spectrum shows its peak at 1349cm-1(D band) is much weaker than that at 1573cm-1(G band). We believe that carbon nanotubes contains much less defects. Long carbon nanotubes with length more than several $\mu$m and the carbon particles with round shape were obtained by CVD at ~$650^{\circ}C$ on the Ni droplets. SEM micrograph nanotubes was identified by SEM. Finally, we performed TEM anaylsis on the caron nanotubes to determine whether or not these film structures are truly caron nanotubes, as opposed to carbon fiber-like structures.

  • PDF

Simultaneous dry-sorption of heavy metals by porous adsorbents during sludge composting

  • Ozdemir, Saim;Turp, Sinan Mehmet;Oz, Nurtac
    • Environmental Engineering Research
    • /
    • v.25 no.2
    • /
    • pp.258-265
    • /
    • 2020
  • Heavy metal removal by using porous mineral adsorbents bears a great potential to decontaminate sludge compost, and natural zeolite (NZ), artificial zeolite (AZ), and expanded perlite (EP) seem to be possible candidates for this purpose. A composting experiment was conducted to compare the efficiency of those adsorbents for removal of iron (Fe), manganese (Mn), chromium (Cr), copper (Cu), zinc (Zn), nickel (Ni), and lead (Pb) from sewage sludge compost with no adsorbent amendment. For this purpose, 10 g of NZ and AZ and 5 g of EP was filled in a small bag made from non-biodegradable synthetic textile and was separately mixed in composting piles. The bags were separated from compost samples at the end of the experiment. AZ and NZ exhibited different reduction potentials depending on the type of heavy metal. AZ significantly reduced Cr (43.7%), Mn (35.8%), and Fe (29.9%), while NZ more efficiently reduced Cu (24.5%), Ni (22.2%), Zn (22.1%), and Pb (21.2%). The removal efficiency of EP was smaller than both AZ and NZ. The results of this simultaneous composting and metal removing study suggest that AZ and NZ can efficiently bind metal during composting process.

Effect of Alloying Elements of Si, Mn, Ni, and Cr on Oxidation of Steels between 1050℃ and 1200℃ in Air (강의 대기 중 1050~1200℃의 산화에 미치는 합금원소 Si, Mn, Ni, Cr의 영향)

  • Lee, Dong Bok
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.4
    • /
    • pp.300-309
    • /
    • 2012
  • Low-carbon steels and a stainless steel were oxidized isothermally and cyclically between $1050^{\circ}C$ and $1200^{\circ}C$ for up to 100 min in air to find the effect of alloying elements of Si, Mn, Ni, and Cr on their oxidation. The most active alloying element of Si was scattered inside the oxide scale, at the scale-alloy interface and as internal oxide precipitates beneath the oxide scale. Manganese, which could not effectively improve the oxidation resistance, was rather uniformly distributed in the oxide scale. Nickel and chromium tended to present at the lower part of the oxide scale. Excessively thick porous scales formed on the low-carbon steels, whereas thin but non-adherent scales containing $Cr_2O_3$ formed on the stainless steel.

Characterization of Redox Cycles of NI-YSZ Porous Anode Support for Tubular SOFCs (원통형 고체산화물연료전지용 다공성 NI-YSZ 연료극의 Redox 사이클 특성)

  • Heo, Yeon-Hyuk;Park, Kwang-Yeon;Lee, Jong-Won;Lee, Seung-Bok;Lim, Tak-Hyoung;Park, Seok-Joo;Song, Rak-Hyun;Shin, Dong-Ryul
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.21 no.6
    • /
    • pp.526-532
    • /
    • 2010
  • The anode may inevitably undergo a number of reduction.oxidation (redox) cycles during solid oxide fuel cells (SOFCs) operation. The re-oxidation of Ni to NiO causes significant mechanical stress to be developed across the anode, which may destroy the integrity of the whole cell. In this study, the redox behavior of Ni-YSZ composite was examined at $800^{\circ}C$ using various characterization techniques.

Preparation of Porous Carbon Support Using Carbon Nanofiber (나노탄소섬유를 이용한 다공성 탄소담체의 제조와 반응 특성)

  • 김명수;정상원;우원준;임연수
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.5
    • /
    • pp.504-512
    • /
    • 1999
  • The high-quality carbon nanofibers were prepared by chemical vapor deposition of gas mixtures of CO-H2 and C3H8-H2 over Fe-Cu and Ni-Cu bimetallic catalysts. The yield and structure of carbon nanofiber produced were altered by the change of catalyst composition and reaction temperature. The high yields were obtained around 500$^{\circ}C$ with e-Cu catalyst and around 700-750$^{\circ}C$ with Ni-Cu catalyst and the relatively higher yields were obtained with the bimetallic catalyst containing 50-90% of Ni and Fe respectively in comparison with the pure metals. The carbon nanofibers produced over the Fe-Cu catalyst at around 500$^{\circ}C$ with the maximum yields had the highest surface ares of 160-200 m2/g around 650$^{\circ}C$ which was slightly lower than the temperature for maximum yields. In order to examine the characteristics of carbon nanofibers as catalyst support Ni and Co metals were supporte on the carbon nanofibers and CO hydrogenation reaction was performed with the catalysts. The particle size distribution of Ni and Co supported over the carbon nanofibers were 6-15 nm and the CO hydrogenation reaction rate with the carbon-nanofiber supported catalysts was much higher than that over the other supports.

  • PDF

Corrosion of Fe-Cr Steels at 600-800℃ in NaCl Salts

  • Lee, Dong Bok;Kim, Min Jung;Yadav, Poonam;Xiao, Xiao
    • Journal of the Korean institute of surface engineering
    • /
    • v.51 no.6
    • /
    • pp.354-359
    • /
    • 2018
  • NaCl-induced hot corrosion behavior of ASTM T22 (Fe-2.25Cr-1Mo), T91 (Fe-9Cr-1Mo), T92 (Fe-9Cr-1.8W-0.5Mo), 347HFG (Fe-18-Cr-11Ni), and 310H (Fe-25Cr-19Ni) steels was studied after spraying NaCl on the surface. During corrosion at $600-800^{\circ}C$ for 50-100 h, thick, non-adherent, fragile, somewhat porous oxide scales formed. All the alloys corroded fast with large weight gains owing to fast scaling and destruction of protective oxide scales. Corrosion rates increased progressively as the corrosion temperature and time increased. Corrosion resistance increased in the order of T22, T91, T92, 347HFG, and 310H, suggesting that the alloying elements of Cr, Ni, and W beneficially improved the corrosion resistance of steels. Basically, Fe oxidized to $Fe_2O_3$, and Cr oxidized to $Cr_2O_3$, some of which further reacted with FeO to form $FeCr_2O_4$ or with NiO to form $NiCr_2O_4$.