• 제목/요약/키워드: Porous Ni

Search Result 221, Processing Time 0.025 seconds

Fabrication of Ni-free Fe-based Alloy Nano Powder by Pulsed Wire Evaporation in Liquid: Part I. Effect of Wire Diameter and Applied Voltage (액중 전기선 폭발법에 의한 Ni-free Fe계 나노 합금분말의 제조: 1. 합금 wire의 직경 및 인가 전압의 영향)

  • Ryu, Ho-Jin;Lee, Yong-Heui;Son, Kwang-Ug;Kong, Young-Min;Kim, Jin-Chun;Kim, Byoung-Kee;Yun, Jung-Yeul
    • Journal of Powder Materials
    • /
    • v.18 no.2
    • /
    • pp.105-111
    • /
    • 2011
  • This study investigated the effect of wire diameter and applied voltage on the fabrication of Ni-free Fe-based alloy nano powders by employing the PWE (pulsed wire evaporation) in liquid, for high temperature oxidation-resistant metallic porous body for high temperature particulate matter (or soot) filter system. Three different diameter (0.1, 0.2, and 0.3 mm) of alloy wire and various applied voltages from 0.5 to 3.0 kV were main variables in PWE process, while X-ray diffraction (XRD), field emission scanning microscope (FE-SEM), and transmission electron microscope (TEM) were used to investigate the characteristics of the Fe-Cr-Al nano powders. It was controlled the number of explosion events, since evaporated and condensed nano-particles were coalesced to micron-sized secondary particles, when exceeded to the specific number of explosion events, which were not suitable for metallic porous body preparation. As the diameter of alloy wire increased, the voltage for electrical explosion increased and the size of primary particle decreased.

Fabrication and Characterization of Cu-Ni- YSZ SOFC Anodes for Direct Utilization of Methane via Cu pulse plating (펄스 도금법에 의한 메탄연료 직접 사용을 위한 Cu-Ni-YSZ SOFC 연료극 제조 및 특성평가)

  • Park, Eon-Woo;Moon, Hwan;Lee, Jong-Jin;Hyun, Sang-Hoon
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.12
    • /
    • pp.807-814
    • /
    • 2008
  • The Cu-Ni-YSZ cermet anodes for direct use of methane in solid oxide fuel cells have been fabricated by electroplating Cu into the porous Ni-YSZ cermet anode. The uniform distribution of Cu in the Ni-YSZ anode could be obtained via pulse electroplating in the aqueous solution mixture of $CuSO_4{\cdot}5H_{2}O$ and ${H_2}{SO_4}$ for 30 min with 0.05 A of average applied current. The power density ($0.17\;Wcm^{-2}$) of a single cell with a Cu-Ni-YSZ anode was shown to be slightly lower in methane at $700^{\circ}C$, compared with the power density ($0.28\;Wcm^{-2}$) of a single cell with a Ni-YSZ anode. However, the performance of the Ni-YSZ anode-supported single cell was abruptly degraded over 21 h because of carbon deposition, whereas the Cu-Ni-YSZ anode-supported single cell showed the enhanced durability upto 52 h.

Deposition of Cu-Ni films by Magnetron Co-Sputtering and Effects of Target Configurations on Film Properties

  • Seo, Soo-Hyung;Park, Chang-Kyun;Kim, Young-Ho;Park, Jin-Seok
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.3C no.1
    • /
    • pp.23-27
    • /
    • 2003
  • Structural properties of Cu-Ni alloy films, such as preferred orientation, crystallite size, in-ter-planar spacing, cross-sectional morphology, and electrical resistivity, are investigated in terms of tar-get configurations that are used in the film deposition by means of magnetron co-sputtering. Two different target configurations are considered in this study: a dual-type configuration in which two separate tar-gets (Cu and Ni) and different bias types (RF and DC) are used and a Ni-on-Cu type configuration in which Ni chips are attached to a Cu target. The dual-type configuration appears to have some advantages over the Ni-on-Cu type regarding the accurate control of atomic composition of the deposited Cu-Ni alloy. However, the dual-type-produced film exhibits a porous and columnar structure, the relatively large internal stress, and the high electrical resistivity, which are mainly due to the relatively low mobility of adatoms. The affects of thermal treatment and deposition conditions on the structural and electrical properties of dual-type Cu-Ni films are also discussed.

A Study on the Pd-Ni Alloy Hydrogen Membrane Using the Sputter Deposition (스퍼터 증착 방식으로 제조된 Pd-Ni 합금 수소 분리막 연구)

  • Kim Dong-Won;Park Jeong-Won;Kim Sang-Ho;Park Jong-Su
    • Journal of Surface Science and Engineering
    • /
    • v.37 no.5
    • /
    • pp.243-248
    • /
    • 2004
  • A palladium-nikel(Pd-Ni) alloy composite membrane has been fabricated on microporous nickel support formed with nickel powder. Plasma surface treatment process is introduced as pre-treatment process instead of HCI activation. Pd coating layer was prepared by dc magnetron sputtering deposition after $H_2$ plasma surface treatment. Palladium-nickel alloy composite layer had a fairly uniform and dense surface morphology. The membrane was characterized by permeation experiments with hydrogen and nitrogen gases at temperature of 773 K and pressure of 2.2psi. The hydrogen permeance was 6 ml/minㆍ$\textrm{cm}^2$ㆍatm and the selectivity was 120 for hydrogen/nitrogen($H_2$/$N_2$) mixing gases at 773 K.

Effects of Stoichiometry on Properties of NiAl Intermetallics coated on Carbon Steel through Combustion Synthesis (연소합성 코팅된 NiAl 금속간화합물의 화학양론이 미끄럼 마모특성에 미치는 영향)

  • Lee, Han-Young;Lee, Jae-Sung
    • Tribology and Lubricants
    • /
    • v.36 no.3
    • /
    • pp.124-132
    • /
    • 2020
  • The effect of the stoichiometry on the sliding wear properties of NiAl coatings has been investigated. Three different powder mixtures with the compositions of Ni-50at%Al, Ni-54at%Al and Ni-42at%Al were diepressed respectively, and which were subsequently coated on mild steel through combustion synthesis in an induction heating system. Sliding wear behavior of the coatings was examined against an alloyed tool steel using a pin-on-disc type sliding wear test machine. As results, it could be seen that powder mixture(Ni-54at%Al) with displaying Al-rich deviations from the stoichiometry of NiAl(Ni-50at%Al) was promoted the most the synthetic reactivity. The microstructure of the coating layer with the compositions of Ni-54at%Al exhibits the porous NiAl single phase structure. However, the microstructure of the coating layer of the compositions of Ni-42at%Al exhibits the denser multi-phase structure containing several intermediate phases in addition to NiAl. Densification of the coating layer was enhanced by increasing the reacting temperature. On the other hand, the wear properties of the coating layers showed that the wear mode at speeds of around 1 m/s was severe wear, regardless of the stoichiometry and reacting temperature. However, wear properties of coating layer with the compositions of Ni-42at%Al were superior to those of coating layer with the compositions of Ni-54at%Al. This would be attributed by the fact that coating layer with the compositions of Ni-42at%Al develops little void and much intermediate phases with high strength.

Supercapacitive Properties of Co-Ni Mixed Oxide Electrode Adopting the Nickel Foam as a Current Collector

  • Cho, Hyeon Woo;Nam, Ji Hyun;Park, Jeong Ho;Kim, Kwang Man;Ko, Jang Myoun
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.12
    • /
    • pp.3993-3997
    • /
    • 2012
  • Three-dimensional porous nickel foam was used as a current collector to prepare a Co-Ni oxide/Ni foam electrode for a supercapacitor. The synthesized Co-Ni oxide was proven to consist of mixed oxide phases of $Co_3O_4$ and NiO. The Co-Ni oxide/Ni foam electrode prepared was characterized by morphological observation, crystalline property analysis, cyclic voltammetry, and impedance spectroscopy. Cyclic voltammetry for the electrode showed high specific capacitances, such as 936 F $g^{-1}$ at 5 mV $s^{-1}$ and 566 F $g^{-1}$ at 200 mV $s^{-1}$, and a comparatively good cycle performance. These improved results were mainly due to the dimensional stability of the nickel foam and its high electrical contact between the electrode material and the current collector substrate.

Dehydrogenation of methylcyclohexane over porous metals (다공성 금속 촉매를 이용한 메틸사이클로헥산의 탈수소 반응)

  • Kim, Jong-Pal
    • Journal of Hydrogen and New Energy
    • /
    • v.15 no.2
    • /
    • pp.152-158
    • /
    • 2004
  • Hydrogen has been considered as an important and essential future energy source. But the storage of the hydrogen is a difficult problem and many studies were focused on this matter. However, the MTH-system (methylcyclohexane, toluene, hydrogen) was proposed for storage of hydrogen by Taube et al. and that is the reaction of hydrogen with toluene to give methylcyclohexane. One toluene molecule can store six hydrogen atoms to form methylcyclohexane. In this form the hydrogen can be easily stored in liquid organic hydrides and transported at ambient pressure in tanks. Hence, this study is focused on the catalytic dehydrogenation of methylcyclohexane. Since supported platinum and nickel were employed as catalysts in literature, in this study, porous Pt and Ni were prepared and tested for the dehydrogenation reaction. When the porous Pt catalyst was applied to the dehydrogenation it showed higher activity in the reaction and higher selectivity to toluene. Specially at higher pressure, it showed almost 100 % conversion and 100 % selectivity and hence porous platinum could be considered as best for the given reaction.