• Title/Summary/Keyword: Porous Flow Analysis

Search Result 235, Processing Time 0.027 seconds

Numerical Simulation of Diffusion and Flow in Fabrication of Carbon/Carbon Composite Using Chemical Vapor Infiltration (다단계 화학반응과 밀도화 모델을 이용한 탄소/탄소 복합재 화학기상침투 공정의 확산 및 유동 수치해석)

  • Kim, Hye-gyu;Ji, Wooseok;Jo, Namchun;Park, Jonggyu
    • Composites Research
    • /
    • v.32 no.1
    • /
    • pp.56-64
    • /
    • 2019
  • In this paper, a model is developed to simulate carbon/carbon composite fabrication using chemical vapor infiltration, considering density and porosity change in the preform and multi-step hydrocarbons reactions. The model considers the preform as a porous medium whose diffusion and flow properties changes due to the porosity. To verify the theoretical model, two numerical analyses were performed for the case that the flow inside the preform is zero and the case that the flow inside the preform is calculated by fluid mechanics. The numerical results showed good agreement with the experimental data.

Analysis of Unsaturated Flow Considering Hysteresis in Porous Media under Antecedent Rainfall (선행강우가 존재하는 다공성 매질에서 이력현상을 고려한 비포화 흐름 해석)

  • Park, Chang Kun;Sonu, Jung Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.5
    • /
    • pp.1137-1143
    • /
    • 1994
  • Through the numerical analysis of the capillary pressure-based Richards equation with and without the effect of the capillary hysteresis under the boundary condition having an antecedent rainfall. the moving tendency of the wetting front, the redistribution of the moisture content, infiltration rate, cumulative infiltration etc, were computed. The effect of the capillary hysteresis cannot be neglected in analyzing an unsaturated flow, and the more accurate results may be obtained by the consideration of the hysteresis effect. If the effect of the hysteresis cannot be considered, the analysis by the use of the main wetting curve may give more reliable result than that of the main drying curve.

  • PDF

Performance Analysis of a Vacuum-Compatible Air Bearing (진공용 공기베어링의 성능해석)

  • Khim, Gyung-Ho;Park, Chun-Hong;Lee, Hu-Sang;Kim, Seung-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.10
    • /
    • pp.103-112
    • /
    • 2006
  • This paper describes a theoretical analysis and experimental verification on the performances of a vacuum-compatible air bearing, which is designed with a cascaded exhaust scheme to minimize the air leakage in a vacuum environment. The design of the vacuum-compatible air bearing equipped with the differential exhaust system requires great care because several design parameters, such as the number of exhaust stages, diameter of exhaust tube, pumping speed of a vacuum pump, and bearing clearance greatly influence the air leakage and thus degree of vacuum. In this study, a performance analysis method was proposed to estimate the performances of the air bearing, such as load capacity, stiffness, and air leakage. Results indicate that the load capacity and stiffness of the air bearing was improved as its boundary pressure, which was determined by the $1^{st}$ exhaust method, was lowered, and the dominant factors on the chamber's degree of vacuum were the number of exhaust stages, exhaust tube diameter and bearing clearance. A vacuum chamber and air bearing stage using porous pad were fabricated to verify the theoretical analysis. The results demonstrate that chamber pressure up to an order of $10^{-3}$ Pa was achieved with the air bearing stage operating inside the chamber, and this analysis method was valid by comparing predicted values with experimental data, for the mass flow rates from the porous pad, and pressures at each exhaust port and chamber, respectively.

Numerical Study on the Behavior of Snow Melting for the Analysis of Defrosting Procedure (제상과정 해석을 위한 눈의 융해거동에 관한 수치적 연구)

  • 이관수;박준상;김서영
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.6
    • /
    • pp.599-608
    • /
    • 2000
  • One dimensional numerical modeling was carried out for the melting behavior of dry snow and the unsaturated flow when heat was supplied from the bottom surface. Discrepancy between the previous experimental data and the present numerical results is substantially reduced by considering the density change of water permeation layer due to the infiltration of meltwater. In the parametric study for effective thermal conductivity, it was found that the effect of this parameter to the behavior of snow melting is minor. Sensitivity analysis showed that the melting time is most sensitive to changes in supplied heat flux, snow temperature, and bulk density, whereas snow bulk density and residual saturation have a significant effect on the height of water permeation layer in snow.

  • PDF

A rock physical approach to understand geo-mechanics of cracked porous media having three fluid phases

  • Ahmad, Qazi Adnan;Wu, Guochen;Zong, Zhaoyun;Wu, Jianlu;Ehsan, Muhammad Irfan;Du, Zeyuan
    • Geomechanics and Engineering
    • /
    • v.23 no.4
    • /
    • pp.327-338
    • /
    • 2020
  • The role of precise prediction of subsurface fluids and discrimination among them cannot be ignored in reservoir characterization and petroleum prospecting. A suitable rock physics model should be build for the extraction of valuable information form seismic data. The main intent of current work is to present a rock physics model to analyze the characteristics of seismic wave propagating through a cracked porous rock saturated by a three phase fluid. Furthermore, the influence on wave characteristics due to variation in saturation of water, oil and gas were also analyzed for oil and water as wet cases. With this approach the objective to explore wave attenuation and dispersion due to wave induce fluid flow (WIFF) at seismic and sub-seismic frequencies can be precisely achieved. We accomplished our proposed approach by using BISQ equations and by applying appropriate boundary conditions to incorporate heterogeneity due to saturation of three immiscible fluids forming a layered system. To authenticate the proposed methodology, we compared our results with White's mesoscopic theory and with the results obtained by using Biot's poroelastic relations. The outcomes reveals that, at low frequencies seismic wave characteristics are in good agreement with White's mesoscopic theory, however a slight increase in attenuation at seismic frequencies is because of the squirt flow. Moreover, our work crop up as a practical tool for the development of rock physical theories with the intention to identify and estimate properties of different fluids from seismic data.

Development of 3-D Flow Model for Porous Media with Scenario-based Ground Excavation (지반굴착 시나리오 기반의 다공성 매질에 대한 3차원 유동해석모델 구축)

  • Cha, Jang-Hwan;Lee, Jae-Young;Kim, Woo-Seok
    • Journal of Korean Society of Disaster and Security
    • /
    • v.10 no.1
    • /
    • pp.19-27
    • /
    • 2017
  • In recent years, ground subsidence has been frequently occurred by underground cavities due to the excessive groundwater inflow, caused by poor construction and management, during tunnel excavation and underground structure construction. In this study, a numerical model (SEEFLOW3D) was developed to estimate groundwater fluctuations for saturated-unsaturated poros media, evaluates the impact on ground excavation with open cut and non-open cut scenarios. In addition, the visual MODFLOW was applied to demonstrate the verification of the model compared with both results. Our results indicated that the RMSE and NRMSE was obtained to range over -3.95~5.7% and 0.56~4.62%, respectively. The developed model was expected to estimate groundwater discharges and apply analysis tool for optimum design of waterproof wall in future.

An Application of Infiltration Facilities for Reducing the Runoff in the Basin (유출저감을 위한 유역내 침투시설의 적용)

  • Lee, Jae-Joon;Seol, Ji-Su
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.3
    • /
    • pp.133-141
    • /
    • 2011
  • Urban development of basin causes increasing runoff volume and peak flowrate and shortening in time of concentration, which may cause frequent flooding downstream. An infiltration facilities are operated as a method of reducing flood discharge of urban rivers and peak flowrate. There are various types of infiltration facilities like infiltration trench and porous pavement. In this study, runoff reduction effect due to installation of infiltration facilities are performed and focused on $0.18km^2$ residential area of Ok-kye dong and $0.67km^2$ industrial area of Gong-dan dong in Gumi City. The analysis is fulfilled with comparison of total runoff volume and runoff reduction volume by using the WinSLAMM and the relation equation between area ratio of infiltration facilities and ratio of runoff reduction are derived and peak flow reduction effect for installation of infiltration facilities is analyzed.

Crucible Cover of Multilayer Porous Hemisphere for Cd Distillation

  • Kwon, S.W.;Lee, Y.S.;Jung, J.H.;Kim, S.H.;Lee, S.J.;Hur, J.M.
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2018.05a
    • /
    • pp.57-57
    • /
    • 2018
  • The electrorefining process is generally composed of two recovery steps in pyroprocessing - the deposit of uranium onto a solid cathode and the recovery of the remaining uranium and TRU elements simultaneously by a liquid cadmium cathode. The liquid cathode processing is necessary to separate cadmium from the actinide elements since the actinide deposits are dissolved or precipitated in a liquid cathode. Distillation process was employed for the cathode processing. It is very important to avoid a splattering of cadmium during evaporation due to the high vapor pressure. In this study, a multi-layer porous round cover was proposed and examined to develop a splatter shield for the Cd distillation crucible. Cadmium vapor can be released through the holes of the shield, whereas liquid drops can be collected in the multiple hemisphere. The collected drops flow on the round surface of the cover and flow down into the crucible. The crucible cover was fabricated and tested in the Cd distiller. The cover was made with three stainless steel round plates with a diameter of 33.50 mm. The distance between the hemispheres and the diameter of the holes are 10 and 1 mm, respectively. About 40 grams of Cd and about 4 grams of Bi was distilled at a reduced pressure for two hours at $470^{\circ}C$. After the Cd distillation experiment, cadmium was not detected and more than 90 % of Bi remained in the ICP-OES analysis. Therefore the crucible cover can be a candidate for the splatter shield of the Cd distillation crucible. Further development of the crucible cover is necessary for the decision of the optimum cover geometry and the operating conditions of the Cd distiller.

  • PDF

The Charncteristics of Organic Sludge in Curing Equipment (유기성 슬러지 양생장치의 건조특성)

  • Jung, Ho-Yun;Park, Jae-Sung;Kang, Jin-Soo;Yun, Hee-Chul;Lee, Yeon-Won
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3173-3177
    • /
    • 2007
  • Recently, we have many problems on the process of the sludge. In past, the sewage sludge was treated by reclaimed land or thrown away in the sea. But these methods caused environmental pollution. Today, many researchers are studying various methods for reducing its volume. One of these method, this study is to reduce the moisture of sewage sludge and to solidify it using a dryer and curing equipment. In this research, we investigated about design parameter and operation condition of the equipment. The curing equipment reduces the percentage of water content from 30% of dryer to 10%. So, we have to study the curing characteristics and performance of curing equipment. For example, there are internal flow characteristics and change of the percentage of water content. And we investigated the change of data at outlet along the initial condition, temperature, humidity and air flow. Using this data, we achieve the experimental results of curing efficiency by each geometry and operating condition. And we also investigated numerical analysis of internal flow using CFD code. This research is basic study for optimal design of the curing equipment.

  • PDF

Analysis of collection Characteristics of Landfill Gas Using ]Relative Fluid Permeability of Gas and Water in Waste Landfill (쓰레기 매립지에서 가스-물 상대유체투과도를 적용한 매립가스의 포집특성분석)

  • 김인기;허대기;김현태;김세준;성원모
    • Journal of Korea Soil Environment Society
    • /
    • v.5 no.3
    • /
    • pp.35-54
    • /
    • 2001
  • It is difficult to accurately predict each flow rate of landfill gas and leachate extracted from many of wells, which have been completed into a waste landfill containing gas and water. However it may be approximately predicted if we can define only relative fluid permeability of gas and leachate flowing through landfill porous media. Therefore numerical simulation using multi-phase flow equations makes use of ei s input data of the relative permeability which is measured and calculated in laboratory environment like in-situ, and consequently we can quantitatively obtain each flow rate of gas and leachate from collection wells. These series of technologies can provide with the important informations to determine the success or failure of landfill gas energy and landfill stabilization. This paper analyses the characteristics of landfill gas collection by six classes of case studies for none described landfill.

  • PDF