• Title/Summary/Keyword: Porous Extension

Search Result 21, Processing Time 0.032 seconds

Control of Plume Interference Using a Porous Extension (다공확장벽을 이용한 플룸간섭의 제어)

  • Young-Ki Lee;Heuy-Dong Kim
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.95-98
    • /
    • 2003
  • The physics of the plume-induced shock and separation particulary at a high plume to exit pressure ratio and supersonic speeds up to Mach 3.0 with aid without a passive control method, porous extension, were studied using computational techniques. Mass-averaged Navier-Stokes equations with the RNG k-$\varepsilon$ turbulence model were solved using a fully implicit finite volume scheme and a 4-stage Runge-Kutta method. The courol methodology for plume-afterbody interactions is to use a perforated wall attached at either the nozzle exit or the edge of the missile base. The Effect of porous wall length on plume interference is also investigated. The computational results show the main effect of the porous extension on plume-afterbody interactions is to in the plume from strongly underexpanding during a change in flight conditions. With control, a change in porous extension length has no significant effect on plume interference.

  • PDF

Control of Plume Interference Effects on a Missile Body Using a Porous Extension (다공확장벽을 이용한 미사일 동체에 대한 플룸간섭 현상의 제어)

  • Young-Ki Lee;Heuy-Dong Kim
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.7 no.4
    • /
    • pp.33-38
    • /
    • 2003
  • The Physics of the Plume-induced shock and separation Particularly at a high Plume to exit pressure ratio and supersonic speeds up to Mach 3.0 with and without a passive control method, porous extension, were studied using computational techniques. Mass-averaged Navier-Stokes equations with the RNG $\kappa$-$\varepsilon$ turbulence model were solved using a fully implicit finite volume scheme and a 4-stage Runge-Kutta method. The control methodology for plume-afterbody interactions is to use a perforated wall attached at either the nozzle exit or the edge of the missile base. The Effect of porous wall length on plume interference is also investigated The computational results show the main effect of the porous extension on plume-afterbody interactions is to restrain the plume from strongly underexpanding during a change in flight conditions. With control, a change in porous extension length has no significant effect rut plume interference.

A Study of the Control of Plume-Induced Flow over a Missile Afterbody (Missile Afterbody에서 Plume-Induced Flow의 제어에 관한 연구)

  • ;Young-Ki Lee
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.45-48
    • /
    • 2003
  • The plume interference is a complex phenomenon, consisting of plume-induced boundary layer separation, separated shear layer, multiple shock waves, and their interactions. The base knowledge of plume interference effect on powered missiles and flight vehicles is not yet adequate to get an overall insight of the flow physics in plume-freestream flow field. Computational studies are performed to better understand the flow physics of the plume-induced shock and separation for Simple, Rounded, Porous-extension test model configurations. The present study simulates highly underexpanded exhaust plume effect on missile body at the transoni $c^ersonic speeds. In order to investigate the plume-induced separation phenomenon, Simple, Rounded and Porous-extension plate are attacked to the missile afterbody. The computational result shows that the rounded afterbody and the porous-extension wall attached at the missile base can alleviate the plume-induced shock wave and separation phenomenon and improve the control of the missile body.dy.

  • PDF

Complete Septal Extension Graft using Porous High-Density Polyethylene Sheet or Septal Cartilage in Unilateral Cleft Lip Nasal Deformities: Photogrammetric Analysis (전비중격연장이식술을 이용한 일측 구순열비변형교정술: 다공성 고밀도폴리에틸렌 판과 비중격연골의 사진계측학적 비교)

  • Han, Ki-Hwan;Jeong, Jin-Wook;Park, Mu-Sik;Kim, Jun-Hyung;Son, Dae-Gu
    • Archives of Plastic Surgery
    • /
    • v.37 no.4
    • /
    • pp.400-408
    • /
    • 2010
  • Purpose: Complete septal extension grafts have been widely used in rhinoplasty for effective projection of the short retruded columella in Asian patients. Autologous septal cartilages and porous high-density polyethylene sheets are frequently used as septal extension grafts. This study was conducted to compare the postoperative results of porous polyethylene sheets and septal cartilages used for correction of unilateral cleft lip nasal deformities by using photogrammetric analysis. Methods: This study investigated a total of 49 patients with cleft lip nasal deformities who underwent corrective surgery, and were followed up for at least 6 months. Septal cartilages were used in 39 patients, and porous polyethylene sheets were used in 10 patients. In all patients, through the open rhinoplasty, complete septal extension grafts were sutured to the caudal margin of the septal cartilage, and the alar cartilage was sutured with suspension. The cleft side alar cartilage was overcorrected by approximately 3 - 5 mm. Postoperative outcomes were evaluated by using photogrammetric analysis. Five indices and 4 angles were measured on their photographs taken before and after the surgery. In patients with unilateral cleft lip nasal deformities, symmetry was also evaluated by means of columellar length index. Results: The postoperative values obtained in photogrammetric analysis showed improvements in comparison with the preoperative ones. The polyethylene group produced more improved outcomes than the septal cartilage group but also resulted in more complications at the same time. Conclusion: The results of this study indicates that complete septal extension grafts are efficient for the correction of unilateral cleft lip nasal deformities. However, since postoperative complications occur more frequently in the polyethylene group than in the septal cartilage group, caution is advised in using porous high-density polyethylene sheets in patients with cleft lip nasal deformities.

Forced Convection in a Circular Pipe with a Partially Filled Porous Medium

  • Kim, Woo-Tae;Hong, Ki-Hyuek;Myung S. Jhon;John G. VanOsdo;Duane H. Smith
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.10
    • /
    • pp.1583-1596
    • /
    • 2003
  • A study of forced convection in a circular pipe with a partially filled porous medium was numerically investigated. The Brinkman-Forchheimer extension of the Darcy model was used to analyze the and temperature distribution in the porous medium. Our study includes two types of porous layer configurations: (1) a layer attached at the tube wall extending inward towards the centerline and (2) a layer at the centerline extending outward. The effect of several parameters, such as Darcy number, effective viscosity, effective thermal conductivity, and inertia parameter, as well as the effect of geometric parameters, were investigated.

Silver Coating on the Porous Pellets from Porphyry Rock and Application to an Antibacterial Media (반암(맥반석)으로 제조한 다공성 펠렛의 Ag 담지 및 항균 메디아로서의 적용)

  • Han, Yo-Sep;Kim, Hyun-Jung;Shin, Young-Seop;Park, Jai-Koo;Ko, Jae-Churl
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.1
    • /
    • pp.16-23
    • /
    • 2009
  • The porous pellets were prepared from porphyry by slurry foaming method. The effect of sintering temperatures on pore structure of porous porphyry pellets with different extension ratio ($E_R$) was investigated by specific surface area, water absorption and porosity, which changed with sintering temperatures. When the sintering temperatures increased from $975^{\circ}C$ to $1075^{\circ}C$, specific surface area and water absorption of the all samples decreased. In case of the sample with an equal sintering temperature, $E_R=3.0$ pellets had little influence on pore structure compared to the $E_R=2.0$ pellets. As a results, it was shown by SEM that facilitated formation of micro pores at $E_R=2.0$ pellets shrunk increasingly after sintering process. At $E_R=3.0$ and sintering temperature at $1025^{\circ}C$, optimum conditions of the porous porphyry porous pellets was found. Also, Escherichia coli removal efficiency of the silver-containing porphoyry porous pellets was measured for the feasibility as a antibacterial media. The antibacterial activity of prepared silver-containing sample was maintained above 90% for 40 days.

Growth Factor Releasing Porous Poly (${\varepsilon}-caprolactone$)-Chitosan Matrices for Enhanced Bone Regenerative Therapy

  • Im, Su-Yeon;Cho, Seon-Hye;Hwang, Jeong-Hyo;Lee, Seung-Jin
    • Archives of Pharmacal Research
    • /
    • v.26 no.1
    • /
    • pp.76-82
    • /
    • 2003
  • Drug releasing porous poly($\varepsilon$-caprolactone) (PCL)-chitosan matrices were fabricated for bone regenerative therapy. Porous matrices made of biodegradable polymers have been playing a crucial role as bone substitutes and as tissue-engineered scaffolds in bone regenerative therapy. The matrices provided mechanical support for the developing tissue and enhanced tissue formation by releasing active agent in controlled manner. Chitosan was employed to enhance hydrophilicity and biocompatibility of the PCL matrices. PDGF-BB was incorporated into PCL-chitosan matrices to induce enhanced bone regeneration efficacy. PCL-chitosan matrices retained a porous structure with a 100-200 $\mu$m pore diameter that was suitable for cellular migration and osteoid ingrowth. $NaHCO_3$ as a porogen was incorporated 5% ratio to polymer weight to form highly porous scaffolds. PDGF-BB was released from PCL-chitosan matrices maintaining therapeutic concentration for 4 week. High osteoblasts attachment level and proliferation was observed from PCL-chitosan matrices. Scanning electron microscopic examination indicated that cultured osteoblasts showed round form and spread pseudopods after 1 day and showed broad cytoplasmic extension after 14 days. PCL-chitosan matrices promoted bone regeneration and PDGF-BB loaded matrices obtained enhanced bone formation in rat calvarial defect. These results suggested that the PDGF-BB releasing PCL-chitosan porous matrices may be potentially used as tissue engineering scaffolds or bone substitutes with high bone regenerative efficacy.

A MULTISCALE MORTAR MIXED FINITE ELEMENT METHOD FOR SLIGHTLY COMPRESSIBLE FLOWS IN POROUS MEDIA

  • Kim, Mi-Young;Park, Eun-Jae;Thomas, Sunil G.;Wheeler, Mary F.
    • Journal of the Korean Mathematical Society
    • /
    • v.44 no.5
    • /
    • pp.1103-1119
    • /
    • 2007
  • We consider multiscale mortar mixed finite element discretizations for slightly compressible Darcy flows in porous media. This paper is an extension of the formulation introduced by Arbogast et al. for the incompressible problem [2]. In this method, flux continuity is imposed via a mortar finite element space on a coarse grid scale, while the equations in the coarse elements (or subdomains) are discretized on a fine grid scale. Optimal fine scale convergence is obtained by an appropriate choice of mortar grid and polynomial degree of approximation. Parallel numerical simulations on some multiscale benchmark problems are given to show the efficiency and effectiveness of the method.

Hydrogen sensor using Pt-loaded porous In2O3 nanoparticle structures (백금 담지 다공성 산화인듐 나노입자 구조를 이용한 수소센서)

  • Sung Do Yun;Yoon Myung;Chan Woong Na
    • Journal of the Korean institute of surface engineering
    • /
    • v.56 no.6
    • /
    • pp.420-426
    • /
    • 2023
  • We prepared a highly sensitive hydrogen (H2) sensor based on Indium oxides (In2O3) porous nanoparticles (NPs) loaded with Platinum (Pt) nanoparticle in the range of 1.6~5.7 at.%. In2O3 NPs were fabricated by microwave irradiation method, and decorations of Pt nanoparticles were performed by electroless plating on In2O3 NPs. Crystal structures, morphologies, and chemical information on Pt-loaded In2O3 NPs were characterized by grazing-incident X-ray diffraction, field-emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, respectively. The effect of the Pt nanoparticles on the H2-sensing performance of In2O3 NPs was investigated over a low concentration range of 5 ppm of H2 at 150-300 ℃ working temperatures. The results showed that the H2 response greatly increased with decreasing sensing temperature. The H2 response of Pt loaded porous In2O3 NPs is higher than that of pristine In2O3 NPs. H2 gas selectivity and high sensitivity was explained by the extension of the electron depletion layer and catalytic effect. Pt loaded porous In2O3 NPs sensor can be a robust manner for achieving enhanced gas selectivity and sensitivity for the detection of H2.

Hygrothermal Fracture Analysis in Dissimilar Materials

  • Ahn, Kook-Chan;Lee, Tae-Hwan;Bae, Kang-Yul
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.2 no.2
    • /
    • pp.65-72
    • /
    • 2001
  • This paper demonstrates an explicit-implicit, finite element analysis for linear as well as nonlinear hygrothermal stress problems. Additional features, such as moisture diffusion equation, crack element and virtual crack extension(VCE) method for evaluating J-integral are implemented in this program. The Linear Elastic Fracture Mechanics(LEFM) Theory is employed to estimate the crack driving force under the transient condition for an existing crack. Pores in materials are assumed to be saturated with moisture in the liquid form at the room temperature, which may vaporize as the temperature increases. The vaporization effects on the crack driving force are also studied. The ideal gas equation is employed to estimate the thermodynamic pressure due to vaporization at each time step after solving basic nodal values. A set of field equations governing the time dependent response of porous media are derived from balance laws based on the mixture theory. Darcy's law is assumed for the fluid flow through the porous media. Perzyna's viscoplastic model incorporating the Von-Mises yield criterion are implemented. The Green-Naghdi stress rate is used for the invariant of stress tensor under superposed rigid body motion. Isotropic elements are used for the spatial discretization and an iterative scheme based on the full Newton-Raphson method is used for solving the nonlinear governing equations.

  • PDF