• Title/Summary/Keyword: Porous Electrode

Search Result 289, Processing Time 0.028 seconds

A Study on the PEM Electrolysis Characteristics Using Ti Mesh Coated with Electrocatalysts (Ti Mesh 처리 촉매전극을 이용한 고체고분자 전해질 전기분해 특성연구)

  • Sim, Kyu-Sung;Kim, Youn-Soon;Kim, Jong-Won;Han, Sang-Do
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.7 no.1
    • /
    • pp.29-37
    • /
    • 1996
  • Alkaline water electrolysis has been commercialized as the only large-scale method for a long time to produce hydrogen and the technology is superior to other methods such as photochemical, thermochemical water splitting, and thermal decomposition method in view of efficiency and related technical problem. However, such conventional electrolyzer do not have high electric efficiency and productivity to apply to large scale hydrogen production for energy or chemical feedstocks. Solid polymer electrolyte water electrolysis using a perfluorocation exchange membrane as an $H^+$ ion conductor is considered to be a promising method, because of capability for operating at high current densities and low cell voltages. So, this is a good technology for the storage of electricity generated by photovoltaic power plants, wind generators and other energy conversion systems. One of the most important R&D topics in electrolyser is how to minimize cell voltage and maximize current density in order to increase the productivity of the electrolyzer. A commercialized technology is the hot press method which the film type electrocatalyst is hot-pressed to soild polymer membrane in order to eliminate the contact resistance. Various technologies, electrocatalyst formed over Nafion membrane surface by means of nonelectrolytic plating process, porous sintered metal(titanium powder) or titanium mesh coated with electrocatalyst, have been studied for preparation of membrane-electrocatalyst composites. In this study some experiments have been conducted at a solid polymer electrolyte water electrolyzer, which consisted of single cell stack with an electrode area of $25cm^2$ in a unipolar arrangement using titanium mesh coated with electrocatalyst.

  • PDF

Electrochemical Characteristics of Hybrid Capacitor and Pulse Performance of Hybrid Capacitor / Li-ion Battery (Hybrid Capacitor의 전기화학적 특성 및 Hybrid Capacitor / Li-ion Battery의 펄스 방전 특성)

  • Lee, Sun-Young;Kim, Ick-Jun;Moon, Seong-In;Kim, Hyun-Soo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.12
    • /
    • pp.1133-1138
    • /
    • 2005
  • In this study, we have prepared, as the pluse power source, a commercially supplied Li-ion battery with a capacity of 700 mAh and AC resistivity of 60 md at 1 kHz and nonaqeous asymmetric hybrid capacitor composed of an activated carbon cathode and MCMB anode, and have examined the electrochemical characteristics of hybrid capacitor and the pulse performances of parallel connected hybrid capacitor/Li-ion battery source. The nonaqueous asymmetric hybrid capacitors constituted with each stack number of pairs composed of the cathode, the porous separator and the anode electrode were housed in Al-laminated film cell. The 10 stacked hybrid capacitor, which was charged and discharged at a constant current at 0.25 $mA/cm^2$ between 3 and 4.3 V, has exhibited the capacitance of 108F and the lowest equivalent series resistance was 32 $m{\Omega}$ at 1 kHz. On the other hand, the enhanced run time of Li-ion battery assisted by the hybrid capacitor was obtained with increasing of current density and pulse width in Pulse mode. The best improvement, $84\;\%$ for hybrid capacitor/Li-ion battery was obtained in the condition of a 7C-rate pulse (100 msec)/0.5C-rate standby/$10\;\%$ duty cycle.

Fabrication of Micro Solid Oxide Fuel Cell by Thin Film Processing Hybridization: I. Multilayer Structure of Sputtered YSZ Thin Film Electrolyte and Ni-Based Anodes deposited by Spray Pyrolysis (박막공정의 융합화를 통한 초소형 고체산화물 연료전지의 제작: I. Spray Pyrolysis법으로 증착된 Ni 기반 음극과 스퍼터링으로 증착된 YSZ 전해질의 다층구조)

  • Son, Ji-Won;Kim, Hyoung-Chul;Kim, Hae-Ryoung;Lee, Jong-Ho;Lee, Hae-Weon;Bieberle-Hutter, A.;Rupp, J.L.M.;Muecke, U.P.;Beckel, D.;Gauckler, L.J.
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.10
    • /
    • pp.589-595
    • /
    • 2007
  • Physical properties of sputtered YSZ thin film electrolytes on anode thin film by spray pyrolisis has been investigated to realize the porous electrode and dense electrolyte multilayer structure for micro solid oxide fuel cells. It is shown that for better crystallinity and density, YSZ need to be deposited at an elevated temperature. However, if pure NiO anode was used for high temperature deposition, massive defects such as spalling and delamination were induced due to high thermal expansion mismatch. By changing anode to NiOCGO composite, defects were significantly reduced even at high deposition temperature. Further research on realization of full cells by processing hybridization and cell performance characterization will be performed in near future.

Synthesis of Mesoporous Tin Oxide and Its Application as a Gas Sensor (메조세공을 갖는 이산화 주석의 합성 및 가스센서로서의 응용)

  • Kim, Nam-Hyon;Kim, Geon-Joong
    • Applied Chemistry for Engineering
    • /
    • v.18 no.2
    • /
    • pp.142-147
    • /
    • 2007
  • In this study, mesoporous tin oxide was synthesized by sol-gel method using $C_{16}TMABr$ surfactant as a template in a basic condition. The optimum conditions for the synthesis of mesoporous $SnO_2$ were investigated and the obtained samples were characterized by XRD, nitrogen adsorption and TEM analysis. A mesoporous and nanostructured $SnO_2$ gas sensor with Au electrode and Pt heater has been fabricated on alumina substrate as one unit via a screen printing process. Sensing abilities of fabricated sensors were examined for CO and $CH_4$ gases, respectively, at $350^{\circ}C$ in the concentration range of 1~10,000 ppm. Influence of loading amount of palladium impregnated on $SnO_2$ was also tested in detection of those gases. High sensitivity to detecting gases and the fast response speed with stability were obtained with the mesoporous tin oxide sensor as compared to a non-porous one under the same detection conditions.

Studies of Performance and Enlarged Capacity through Multi-stages Stacked Module in Membrane Capacitive Deionization Process (막 축전식 탈염 공정의 다단 적층 모듈을 통한 처리 용량 증대 및 이의 성능 연구)

  • Song, Yye jin;Yun, Won Seob;Rhim, Ji Won
    • Membrane Journal
    • /
    • v.27 no.5
    • /
    • pp.449-457
    • /
    • 2017
  • In this study, the 10 stages stacked module was designed by increasing the number of unit cells in the membrane capacitive deionization(MCDI) process. The aminated polysulfone and sulfonated poly(ether ether ketone) were synthesized and coated on porous carbon electrode by casting method. The salt removal efficiency was measured for the 10 stage stacked module under the operation conditions of adsorption voltage and time, desorption voltage and time, flow rate and concentration of feed water, and di-valent solutions including $CaSO_4$, $MgCl_2$ and tap water. Typically, when 100 mg/L of NaCl as the feed was used, the salt removal efficiency was 98.3% at a flow rate of 100 mL/min, the adsorption condition of 1.2 V/3 min and desorption condition of -0.5 V/5 min.

Improvement of Platinum Particle Dispersion on Porous Electrode for Phosphoric Acid Fuel Cell (연료전지용 다공성전극에 있어서 백금촉매의 분산성개선)

  • Park, Jung-Il;Kim, Jo-Woong;Lee, Ju-Seong
    • Applied Chemistry for Engineering
    • /
    • v.1 no.2
    • /
    • pp.224-231
    • /
    • 1990
  • To improve the dispersion of platinum catalyst, the effects of carbon black surface treatment, solvents, surfactants, and ultrasonic homogenizing were examined. Upon introducing the hydrophilic groups acting as an anchorage center of the catalyst on the surface of carbon black by oxidation, the migrating and growing of platinum particles(or ions) during reduction could be restricted. When mixed solvents, surfactants, or ultrasonic homogenizer were used to disperse catalysts on the carbon black, the dispersion of catalyst could be improved, due to the good permeation of chloroplatinic acid through the pore of carbon black. Among the impregnation methods, the method using ultrasonic homogenizer with mixed solvent was the most excellent. Using this method the particle sized could be minimized in less than $30A^{\circ}$ and distributed homogeneously.

  • PDF

Regeneration of PCB Etchants and Copper Recovery in a Batch-type Electrolytic Cell (회분식 전해조에서 PCB 식각폐수의 재생 및 구리의 회수)

  • Nam, Sang Cheol;Nam, Chong Woo;Tak, Yongsug;Oh, Seung Mo
    • Applied Chemistry for Engineering
    • /
    • v.8 no.2
    • /
    • pp.161-171
    • /
    • 1997
  • Anodic regeneration of PCB enchant and cathodic deposition of copper using electrochemical method has been studied. Cu(I)/Cu(II) concentration ratio as a function of Cu(I) oxidation at the anode was measured from the potential difference between platinum and Ag/AgCl/4M KCl electrodes. Chlorine gas evolution was minimized by maintaining Cu(I) concentration above a specific concentration and using non-porous graphite electrode. Dendritic copper deposition was observed at the cathode and the optimum conditions for Cu deposition was identified as the current density of $360mA/cm^2$, and copper concentration of 12 g/l. Titanium was the most effective cathode material which showed a higher current efficiency and copper recovery. The current efficiency decreased with increasing temperature, but the highest power efficiency was achieved at $50^{\circ}C$.

  • PDF

Molybdenum Oxides as Diffusion Barrier Layers against MoSe2 Formation in A Nonvacuum Process for CuInSe2 Solar Cells (비진공법 CuInSe2 태양전지에서 MoSe2의 생성을 억제하기 위한 산화 몰리브데늄 확산장벽 층)

  • Lee, Byung-Seok;Lee, Doh-Kwon
    • Current Photovoltaic Research
    • /
    • v.3 no.3
    • /
    • pp.85-90
    • /
    • 2015
  • Two-step processes for preparing $Cu(In,Ga)Se_2$ absorber layers consist of precursor layer formation and subsequent annealing in a Se-containing atmosphere. Among the various deposition methods for precursor layer, the nonvacuum (wet) processes have been spotlighted as alternatives to vacuum-based methods due to their potential to realize low-cost, scalable PV devices. However, due to its porous nature, the precursor layer deposited on Mo substrate by nonvacuum methods often suffers from thick $MoSe_2$ formation during selenization under a high Se vapor pressure. On the contrary, selenization under a low Se pressure to avoid $MoSe_2$ formation typically leads to low crystal quality of absorber films. Although TiN has been reported as a diffusion barrier against Se, the additional sputtering to deposit TiN layer may induce the complexity of fabrication process and nullify the advantages of nonvacuum deposition of absorber film. In this work, Mo oxide layers via thermal oxidation of Mo substrate have been explored as an alternative diffusion barrier. The morphology and phase evolution was examined as a function of oxidation temperature. The resulting Mo/Mo oxides double layers were employed as a back contact electrode for $CuInSe_2$ solar cells and were found to effectively suppress the formation of $MoSe_2$ layer.

The developments of heavy hydrocarbon reformer for SOFC

  • Bae, Jung-Myeon
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.58.2-58.2
    • /
    • 2012
  • Heavy hydrocarbon reforming is a core technology for "Dirty energy smart". Heavy hydrocarbons are components of fossil fuels, biomass, coke oven gas and etc. Heavy hydrocarbon reforming converts the fuels into $H_2$-rich syngas. And then $H_2$-rich syngas is used for the production of electricity, synthetic fuels and petrochemicals. Energy can be used efficiently and obtained from various sources by using $H_2$-rich syngas from heavy hydrocarbon reforming. Especially, the key point of "Dirty energy smart" is using "dirty fuel" which is wasted in an inefficient way. New energy conversion laboratory of KAIST has been researched diesel reforming for solid oxide fuel cell (SOFC) as a part of "Dirty energy smart". Diesel is heavy hydrocarbon fuels which has higher carbon number than natural gas, kerosene and gasoline. Diesel reforming has difficulties due to the evaporation of fuels and coke formation. Nevertheless, diesel reforming technology is directly applied to "Dirty fuel" because diesel has the similar chemical properties with "Dirty fuel". On the other hand, SOFC has advantages on high efficiency and wasted heat recovery. Nippon oil Co. of Japan recently commercializes 700We class SOFC system using city gas. Considering the market situation, the development of diesel reformer has a great ripple effect. SOFC system can be applied to auxiliary power unit and distributed power generation. In addition, "Dirty energy smart" can be realized by applying diesel reforming technology to "Dirty fuel". As well as material developments, multidirectional approaches are required to reform heavy hydrocarbon fuels and use $H_2$-rich gas in SOFC. Gd doped ceria (CGO, $Ce_{1-x}Gd_xO_{2-y}$) has been researched for not only electrolyte materials but also catalysts supports. In addition, catalysts infiltrated electrode over porous $La_{0.8}Sr_{0.2}Ga_{0.8}Mg_{0.2}O_3-{\delta}$ and catalyst deposition at three phase boundary are being investigated to improve the performance of SOFC. On the other hand, nozzle for diesel atomization and post-reforming for light-hydrocarbons removal are examples of solving material problems in multidirectional approaches. Likewise, multidirectional approaches are necessary to realize "Dirty energy smart" like reforming "Dirty fuel" for SOFC.

  • PDF

Preparation and Electrochemical Performance of Electrode Supported La0.75Sr0.25Ga0.8Mg0.16Fe0.04O3-δ Solid Oxide Fuel Cells

  • Yu, Ji-Haeng;Park, Sang-Woon;Woo, Sang-Kuk
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.5
    • /
    • pp.479-484
    • /
    • 2011
  • In this paper, investigations of thick film $La_{0.75}Sr_{0.25}Ga_{0.8}Mg_{0.16}Fe_{0.04}O_{3-{\delta}}$ (LSGMF) cells fabricated via spin coating on either NiO-YSZ anode or $La_{0.7}Sr_{0.3}Ga_{0.6}Fe_{0.4}O_3$ (LSGF) cathode substrates are presented. A La-doped $CeO_2$ (LDC) layer is inserted between NiO-YSZ and LSGMF in order to prevent reactions from occurring during co-firing. For the LSGF cathode-supported cell, no interlayer was required because the components of the cathode are the same as those of LSGMF with the exception of Mg. An LSGMF electrolyte slurry was deposited homogeneously on the porous supports via spin coating. The current-voltage characteristics of the anode and cathode supported LSGMF cells at temperatures between $700^{\circ}C$ and $850^{\circ}C$ are described. The LSGF cathode supported cell demonstrates a theoretical OCV and a power density of ~420 mW $cm^2$ at $800^{\circ}C$, whereas the NiO-YSZ anode supported cell with the LDC interlayer demonstrates a maximum power density of ~350 mW $cm^2$ at $800^{\circ}C$, which decreased more rapidly than the cathode supported cell despite the presence of the LDC interlayer. Potential causes of the degradation at temperatures over $700^{\circ}C$ are also discussed.