• Title/Summary/Keyword: Porosity reduction

Search Result 223, Processing Time 0.03 seconds

Bending analysis of an imperfect FGM plates under hygro-thermo-mechanical loading with analytical validation

  • Daouadji, Tahar Hassaine;Adim, Belkacem;Benferhat, Rabia
    • Advances in materials Research
    • /
    • v.5 no.1
    • /
    • pp.35-53
    • /
    • 2016
  • Flexural bending analysis of perfect and imperfect functionally graded materials plates under hygro-thermo-mechanical loading are investigated in this present paper. Due to technical problems during FGM fabrication, porosities and micro-voids can be created inside FGM samples which may lead to the reduction in density and strength of materials. In this investigation, the FGM plates are assumed to have even and uneven distributions of porosities over the plate cross-section. The modified rule of mixture is used to approximate material properties of the FGM plates including the porosity volume fraction. In order the elastic coefficients, thermal coefficient and moisture expansion coefficient of the plate are assumed to be graded in the thickness direction. The elastic foundation is modeled as two-parameter Pasternak foundation. The equilibrium equations are given and a number of examples are solved to illustrate bending response of Metal-Ceramic plates subjected to hygro-thermo-mechanical effects and resting on elastic foundations. The influences played by many parameters are investigated.

Effects of Curing Temperature on Autogenous Shrinkage, Relative Humidity, Pore Structure of Cement Pastes

  • Park Ki-Bong
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.5 s.89
    • /
    • pp.853-856
    • /
    • 2005
  • A low water/cement ratio leads to autogenous shrinkage of cement paste at an early age. This autogenous shrinkage is related to the change of relative humidity in the pore structure that is formed during the hydration process. The relationship between autogenous shrinkage and relative humidity change are relatively well defined today, but the effects of temperature on autogenous shrinkage, relative humidity, and pore structures have been studied less systematically. This study focused on correlating alterations of these properties of cement paste hydrated at constant temperatures of 20, 40, and $60^{\circ}C$. The test results clearly indicate that increasing curing temperature resulted in increased porosity, particularly for pores between 5 to 50 nm as measured by MIP, and increased autogenous shrinkages, as a consequence of a reduction of relative humidity at early ages.

Endovascular Treatment by using Double Stent Method for Ruptured Vertebral Artery Dissecting Aneurysms

  • Kim, Sung-Hoon;Choi, Chang-Hwa;Lee, Tae-Hong;Lee, Sang-Weon
    • Journal of Korean Neurosurgical Society
    • /
    • v.38 no.2
    • /
    • pp.132-135
    • /
    • 2005
  • We report two cases of patients with ruptured vertebral artery dissecting aneurysms that were treated using double overlapping stent placement. Angiography performed immediately after the procedure revealed a significant reduction of aneurysmal filling due to the intraaneurysmal thorombosis. In one case, complete disappearance of the lesion was observed after seven days and in the another one, the size of previous aneurysm sac was decreased on 7th post-procedure day. The reduced stent porosity caused by the overlapping stents, which result in significant hemodynamic changes inside aneurysmal sac, may accelerate intraanuerysmal thromobosis and may be helpful in achieving a more rapid complete occlusion of aneurysm. This double stent method may represent a therapeutic alternatives for dissecting vertebral artery aneurysm in which conventional endovascular techniques or stent supported coil embolization is not considered feasible and surgical treatment is contraindicated.

Effect of Diffusion Layer for Cell Performance in DMFC (직접메탄올 연료전지에서 전지 성능에 대한 확산층의 영향)

  • Kwon Bu-Kil;Park Kyung-Won;Choi Jong-Ho;Sung Yung-Eun
    • 한국전기화학회:학술대회논문집
    • /
    • 2001.06a
    • /
    • pp.179-184
    • /
    • 2001
  • The diffusion layer within MEA(membrane electrode assembly) has been evaluated important factor for improvement of cell performance in DMFC. The diffusion layer in MEA structure leads to the reduction of catalyst loss in active catalysts layer as well as prevention of water-flooding in cathode. Cell performance is directly affected by interior properties of diffusion layer materials. Acetylene Black and $RuO_2$ with large pore size and low porosity compared to Vulcan XC-72R gave better performance caused by vigorous methanol diffusion and water removal. And $RuO_2$ as diffusion layer materials showed different behavior in anode and cathode compartment, that is, diffusion layers in anode and cathode side make methanol diffusion and water removal facilitate, respectively.

  • PDF

Using AP2RC & P1RB micro-silica gels to improve concrete strength and study of resulting contamination

  • Zahrai, Seyed Mehdi;Mortezagholi, Mohamad Hosein;Najaf, Erfan
    • Advances in concrete construction
    • /
    • v.4 no.3
    • /
    • pp.195-206
    • /
    • 2016
  • Today, application of additives to replace cement in order to improve concrete mixes is widely promoted. Micro-silica is among the best pozzolanic additives which can desirably contribute to the concrete characteristics provided it is used properly. In this paper, the effects of AP2RC and P1RB micro-silica gels on strength characteristics of normal concrete are investigated. Obtained results indicated that the application of these additives not only provided proper workability during construction, but also led to increased tensile, compressive and flexural strength values for the concrete during early ages as well as ultimate ones with the resulting reduction in the porosity lowering permeability of the micro-silica concrete. Furthermore, evaluation of microbial contamination of the mentioned gels showed the resultant contamination level to be within the permitted range.

Unsteady Aerodynamics of Flat Plate with Porous Trailing-edge (다공성 표면 평판 끝 단 위의 비정상 공력 특성에 대한 연구)

  • Jeong, Ye-Eun;Moon, Young-J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.134-137
    • /
    • 2008
  • In this study, a computational analysis is conducted to investigate the effects of porous surfaces on the lift and drag forces of the flat plate. With the porous treatment, it is found that the strength of the Karman vortex as well as its influences over the trailing-edge surface are much weakened, resulting in significant reduction of the pressure fluctuations over the flat plate. The drag and lift coefficients are decreased by 85% and 18%, respectively, compared to the solid surface. The computed results also indicate that the size of the porous surface area does not have much influences but the back side of the flat plate has non-negligible effects on the interaction between the wall and the Karman vortex. As a result, the lift coefficient for the solid back side case is decreased only by 50.5% compared to the solid case and the drag coefficient is even increased by 65%.

  • PDF

Three-Dimensional Fluid Flow Analysis of Automotive Carbon Canister for Reducing Evaporative Emissions (증발가스 배출물 억제를 위한 자동차용 캐니스터의 3차원 유동장 해석)

  • 정수진;김우승
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.6
    • /
    • pp.85-93
    • /
    • 2001
  • Minimized canister flow restriction and maximized flow uniformity are desired to maximize a purge capability. With the impending ORVR(On Board Refueling Vapor Recovery) systems, the reduction of restriction and increase of flow uniformity in a carbon canister becomes even more critical to meet the stringent regulation. In this study, three-dimensional numerical simulations have been performed to investigate the three-dimensional internal flow patterns in a carbon canister during purge. The effects of the declined angle of the purge pipe and the number of partitions on the pressure drop and purge efficiency in a carbon packed bed are examined. Results show that the purge efficiency and space velocity distribution are affected in the upstream region of 40% of total canister bed by porosity of carbon granule and angle of purge pipe. It is also found that the purge efficiency decreases with increasing the number of partitions.

  • PDF

Removal Characterics of $SO_x$ by CuO Impregnated ${\gamma}-Alumina$ (${\gamma}-Alumina$에 담지된 산화구리에 의한 $SO_x$가스의 제거 특성)

  • 이창선;윤용수
    • Journal of environmental and Sanitary engineering
    • /
    • v.11 no.3
    • /
    • pp.29-35
    • /
    • 1996
  • Numerical solutions were obtained to the model equations for various parameters characterizing the pore structure, effective internal diffusion and the chemical reaction constant. The conversion was decreased with the cause of pore closure at the surface of reacting particles, reduction of porosity, surface area of reaction and effective diffusion coefficient in the solid with the progress of reaction. Total conversion was strongly depend on the local conversion at surface. According to the decreasing of impregnated concentration of the copper oxide and the increase of the flue gases concentration, total conversion was increased. And the conversion were affected by gas flow rate and pore size distribution of the reacting solid.

  • PDF

An Effect of Blending Materials on the Strength Characteristics of High Strength Cement Composite (고강도 시멘트 복합체의 강도특성에 미치는 혼합재료의 영향)

  • 최일규;김정환;한기성
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.3
    • /
    • pp.330-336
    • /
    • 1994
  • High strength cement composites (W/C=0.1) were prepared by using various blending materials such as SiC whisker and white carbon (hydrated silica: SiO2·nH2O). The effect of various blending materials on the microstructure and strength of the hardened cement paste were investigated in the view of fracture mechanics. The plain specimen showed 101 MPa of flexural strength, 81 GPa of Young's modulus and 1.32 MPam1/2 of fracture toughness. When the blending materials were added to the composites, their values were enhanced to about 110∼138 MPa, 95∼146 GPa and 1.32∼1.87MPam1/2 respectively. The improvement of the mechanical strength for the hardened cement paste may be due to the removal of macropores, the reduction of total porosity, pozzolanic reaction and the increase of various fracture toughening effect.

  • PDF

Elaboration of (Steel/Cemented Carbide) Multimaterial by Powder Metallurgy

  • Pascal, Celine;Chaix, Jean-Marc;Dutt, Ankur;Lay, Sabine;Allibert, Colette H.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.291-292
    • /
    • 2006
  • A steel/cemented carbide couple is selected to generate a tough/hard two layers material. Sintering temperature and composition are deduced from phase equilibria, and experimental studies are used to determine optimal conditions. Liquid migration from the hard layer to the tough one is observed. Microstructure evolution during sintering of the tough material (TEM, SEM, image analysis) evidences coupled mechanisms of pore reduction and WC dissolution. Liquid migration, as well as interface crack formation due to differential densification are limited by suitable temperature and time conditions.

  • PDF