• Title/Summary/Keyword: Pore rate

Search Result 837, Processing Time 0.023 seconds

Effects of Operation Parameters on Critical Flux During Submerged-Type Membrane Filtration System (침지형 분리막 여과공정에서 운전조건에 따른 임계플럭스에 대한 연구)

  • Kim, Jun-Sung;Ahn, Kyu-Hong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.16 no.6
    • /
    • pp.717-725
    • /
    • 2002
  • A bench-scale submerged-type membrane filtration system (SMFS) was constructed to study a feasibility of membrane filtration for solid-liquid separation in water and wastewater treatment processes. In the case of applying the SMFS to a biological wastewater treatment process, so-called membrane bioreactor, aeration underneath membrane modules is usually employed in order to provide oxygen demand for microbial growth as well as to control membrane fouling. A study was investigated the effects of operation parameters by aeration intensity, feed concentration, foulant type and airlift pore size on critical flux. Critical flux tends to increase with aeration rate. Optimal aeration flow rate was found to be 10 L/min/module. Feed concentration and foulant type has a significant effect on membrane fouling and filtration performance. But downward position and pore size of airlift has no a significant effects on membrane fouling and filtration performance.

Corrosion Inhibition Properties of Conifer Cone (Pinus resinosa) Extract in Chloride Contaminated Concrete Pore Solutions (염화물에 노출된 콘크리트 기공 내에 솔방울 추출물의 부식 방청 특성)

  • Karthick, Subbiah;Park, TaeJoon;Lee, Han Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.63-64
    • /
    • 2021
  • The corrosion inhibition properties of conifer cone (Pinus resinosa) extract were studied in synthetic concrete pore solutions (SCPS) with and without chloride environments by electrochemical methods. The electrochemical impedance spectroscopy (EIS) revealed that the conifer cone (CC) extract showed promising inhibition behavior by diminishing the corrosion rate of steel rebar both solutions i.e. with and without chloride. The extract of conifer cone hinders the corrosion reaction between steel rebar and aggressive ions. Further, it can be verified that the up to 1000mg.L-1 of CC extract can able to reduce the corrosion rate of steel rebar in chloride contaminated concrete.

  • PDF

The Effects of Stress and Time History on Pore Pressure Parameter of Overconsoldated clay (과압밀점토의 간극수압계수에 응력이력과 시간이력이 미치는 영향)

  • 김수삼;김병일;한상재;신현영
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.14 no.4
    • /
    • pp.286-294
    • /
    • 2002
  • This study investigated the effects of stress and time history of overconsolidated clayey soils on pore pressure parameter, A. Laboratory tests were carried out under the conditions of both varying stress and time history. The stress history is classified into (i) rotation angle of stress path, (ii) overconsolidation ratio, and (iii) magnitude of length of recent stress path. The time history is divided into (i) loading rate of recent stress path and (ii) rest time. Pore pressure parameters are different both in the magnitude and trend with the rotation angle, depending on the magnitude of overconsolidation ratio but not in a trend. In addition, the pore pressure parameters have no effects on the magnitude of length of recent stress path except the level of initially small strain, while loading rates of recent stress path have effects on it. Finally, the pore pressure parameters of overconsolidated clays increase with the existence of the rest time, until either the deviator stress exceeds 70 kPa or the strain up to 0.1%.

A Study on the physical characteristics of foaming glass by recycling waste glass (재생발포유리의 물리적 특성에 관한 연구)

  • Kim Hyung-Ju;Chang Pil-Kyu;Choi Chang-Ha;Lee Soo-Wohn;Cho Hae-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.6 no.6
    • /
    • pp.473-477
    • /
    • 2005
  • In the study of foaming a general waste glass, sample 1 to 5 were made in a various foaming conditions, measurements of pH, density, compressive strength, thermal conductivity, and the sound absorption rate were carried out. Sample I showed the most small pore, and sample 5 showed pores of 3 times larger than that of sample 1. In terms of pore size, Sample 5 was foamed mostly well, but except lower density compressive strength, efficiency of sound absorption, testing in sound room were obtained below the minimum values is lower. In the case of Sample 1 it showed $0.58g/cm^3$, but the final target value was $0.8g/cm^3$. In the case of compressive strength it showed $22kg/cm^3$, which is above value of the final target. The efficiency of sound absorption of Sample 1 showed NRC 0.68, which is close to the final target of NRC 0.7.

  • PDF

Effect of High-Molecular Weight Organic Compounds on Improvement of Pore Structure of Cement Materials

  • Lee, Woong-Geol;Jeon, Se-Hoon;Song, Myong-Shin;Kim, Jusung
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.6
    • /
    • pp.534-540
    • /
    • 2019
  • Carbon dioxide emissions involved in global warming are one of the most important issues in the world, and carbon dioxide emissions from the cement industry are about 7% of total carbon dioxide emissions. Thus, reduction in the amount of utilized cement can contribute to a reduction of carbon dioxide emissions. The average life of concrete is 20 ~ 30 years, and if concrete life can be improved by ten years, cement use will be much lower. In this study, we examined the use and effect of fructan from microbes as a method for the densification of the pore structure of cement. The effect of fructan on the hydration reaction and pore distribution, as well as the water absorption of hardened cement mortar were studied. Pores distribution increased in mesopore OPC, and absorption rate was found to decrease with the use of fructan, which has a glue-like and swelling character.

A Study on Wear Properties of Plasma Sprayed $Cr_3C_2$-NiCr Coating at High Temperature (크롬탄화물 용사피막의 고온마모 특성연구)

  • 김의현;권숙인
    • Journal of Welding and Joining
    • /
    • v.11 no.4
    • /
    • pp.91-102
    • /
    • 1993
  • The plasma sprayed $Cr_3C_2$-NiCr coatings are widely used as wear-resistant and corrosion-resistant materials. The mechanical and wear properties of the plasma sprayed $Cr_3C_2$-NiCr coating on steel plate were examined in this study. The pore in the coatings could be classified into two types, the one is the intrinsic pore originated from the spraying powder, the other is the extrinsic pore formed during spraying. During the tensile adhesion test, the fracture occured at the interface of top coating and bond coating. It is though that the compressive residual stress increases with the increase of the top coating thickness. From the wear test, it was found that the wear rate increased with the increase of the sliding velocity regardless of the temperature. It is thought that the fracture toughness reduces with the increase of the sliding velocity at $30^{\circ}C$ and that the adhesion amount increases with the increase of the sliding velocity at $400^{\circ}C$ It is concluded that the wear mechanism at $30^{\circ}C$ is the fracture and pull-out of the carbide particles due to the fatigue on sliding surface, while the wear mechanism at $400^{\circ}C$ is the adhesion of the smeared layer formed during wear process.

  • PDF

The Extraction of Manganese from the Medium-Low Carbon Ferromanganese Dust with Nitric Acid (질산에 의한 중.저탄소페로망간제조분진에 함유된 망간의 침출)

  • 이계승;한기천;송영준;신강호;조동성
    • Resources Recycling
    • /
    • v.9 no.1
    • /
    • pp.21-26
    • /
    • 2000
  • Extraction of manganese was investigated with nitric acid from the dust which was generated in the AOD process producing a medium-low carbon ferromanganese from a high carbon ferromanganese. Content of manganese oxide in the dust was about 90%, and phase of it was confirmed as $Mn_3O_4$, The $Mn_3O_4$ particles was agglomerated as spherical shape, and had a lot of pore and crack inside. Maximum recovery of Mn from the sample in the leaching step was about 67% and residue was the amorphous $MnO_2$. The extraction of Mn increased with increasing temperature, but decreased in proportion to concentration of nitric acid. The extraction rate was in good agreement with the pore diffusion model.

  • PDF

Shear strength characteristics of a compacted soil under infiltration conditions

  • Rahardjo, H.;Meilani, I.;Leong, E.C.;Rezaur, R.B.
    • Geomechanics and Engineering
    • /
    • v.1 no.1
    • /
    • pp.35-52
    • /
    • 2009
  • A significantly thick zone of steep slopes is commonly encountered above groundwater table and the soils within this zone are unsaturated with negative pore-water pressures (i.e., matric suction). Matric suction contributes significantly to the shear strength of soil and to the factor of safety of unsaturated slopes. However, infiltration during rainfall increases the pore-water pressure in soil resulting in a decrease in the matric suction and the shear strength of the soil. As a result, rainfall infiltration may eventually trigger a slope failure. Therefore, understanding of shear strength characteristics of saturated and unsaturated soils under shearing-infiltration (SI) conditions have direct implications in assessment of slope stability under rainfall conditions. This paper presents results from a series of consolidated drained (CD) and shearing-infiltration (SI) tests. Results show that the failure envelope obtained from the shearing-infiltration tests is independent of the infiltration rate. Failure envelopes obtained from CD and SI tests appear to be similar. For practical purposes the shear strength parameters from the CD tests can be used in stability analyses of slopes under rainfall conditions. The SI tests might be performed to obtain more conservative shear strength parameters and to study the pore-water pressure changes during infiltration.

The characteristics of subgrade mud pumping under various water level conditions

  • Ding, Yu;Jia, Yu;Wang, Xuan;Zhang, Jiasheng;Luo, Hao;Zhang, Yu;Chen, Xiaobin
    • Geomechanics and Engineering
    • /
    • v.30 no.2
    • /
    • pp.201-210
    • /
    • 2022
  • This paper presents a study regarding the influence of various water levels on the characteristics of subgrade mud pumping through a self-developed test instrument. The characteristics of mud pumping are primarily reflected by axial strain, excess pore water pressure, and fine particle migration. The results show that the axial strain increases nonlinearly with an increase in cycles number; however, the increasing rate gradually decreases, thus, an empirical model for calculating the axial strain of the samples is presented. The excess pore water pressure increases rapidly first and then decreases slowly with an increase in cycles number. Furthermore, the dynamic stress within the soil first rapidly decreases and then eventually slows. The results indicate that the axial strain, excess pore water pressure, and the height and weight of the migrated fine particles decrease significantly with a low water level. In this study, when the water level is 50 mm lower than the subgrade soil surface, the issue of subgrade mud pumping no longer exist.

Multiscale modeling of smectite illitization in bentonite buffer of engineered barrier system

  • Xinwei Xiong;Jiahui You;Kyung Jae Lee;Jin-Seop Kim
    • Nuclear Engineering and Technology
    • /
    • v.56 no.8
    • /
    • pp.3242-3254
    • /
    • 2024
  • With the increasing usage of nuclear energy, how to properly dispose nuclear waste becomes a critical issue. In this study, a multiscale modeling approach combining the experimental findings is presented to address the illitization process, its impact on transport properties, and system behavior of bentonite buffer in engineered barrier systems (EBS). Through the pore-scale modeling, reactive transport properties such as illite generation rate and effective diffusion coefficient of potassium ion as a function of porosity and temperature are quantified by employing the findings of hydrothermal reaction experiments of Bentonil-WRK. The capability of pore-scale modeling has been developed based on the Darcy-Brinkmann-Stokes equation, involving the processes of smectite illitization and clay swelling. Obtained reactive transport properties are utilized as input parameters for the macroscale modeling to predict the long-term behavior of bentonite buffer in EBS. As such, this study involves the whole workflow of quantifying the reaction parameters of smectite illitization through the hydrothermal reaction experiments, and numerically modeling the reactive transport process of smectite illitization in bentonite buffer of EBS from pore-scale to macroscale. The presented multiscale modeling findings are expected to provide reliable solution for safe nuclear waste disposal with EBS.