• Title/Summary/Keyword: Pore pressure dissipation

Search Result 107, Processing Time 0.025 seconds

One-dimensional consolidation analysis of clayey soils based on elasto-viscous liquid model (탄점성압밀방정식을 이용한 점성토의 일차원 압밀 해석에 관한 연구)

  • 염혜선;김지용;정승용;김수삼
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.689-694
    • /
    • 2000
  • The traditional concept after Terzaghi was that consolidation was the dissipation process of pore water pressure compatible to external loading which was generated immediately after the loading. However, a theory of one-dimensional consolidation based on elasto-viscous liquid model proposed by Yoshikuni(1994) explained that the process of primary and secondary consolidation was considered to be not a simple process of dissipation of pore water pressure but a simultaneous process of dissipation and generation by external loading. This study attempts to demonstrate general consolidation behaviour of clayey soils including effects of consolidation history, load increment and thickness of cohesive layer by one-dimensional Finite Difference Method(F.D.M) analysis from the viewpoint of elasto-viscous consolidation theory.

  • PDF

Determination of Horizontal Coefficient of Consolidation from the Self-boring Pressuremeter Holding Test by Considering Pore Pressure Dissipation Trend (간극수압 소산경향을 고려한 자가굴착식 프레셔메터로부터의 수평압밀계수 결정법)

  • 김영상
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.3
    • /
    • pp.151-159
    • /
    • 2004
  • This paper describes a systematic way of identifying the horizontal coefficient of consolidation of clayey soil by applying an optimization technique to the early part of dissipation data measured from the self-boring pressuremeter strain holding test. An analytical solution developed by Randolph & Wroth (1979) was implemented in normalized form to express the build-up of excess pore pressures as a function of the rigidity index and subsequent dissipation of excess pore pressures around a pressuremeter Horizontal coefficient of consolidation was determined by minimizing the differences between theoretical and measured excess pore pressure curves over 50% degree of dissipation range using optimization technique. The effectiveness of the proposed back-analysis method was examined against the real fled performances obtained from pressuremeter strain holding tests at Gimje and Yangsan site. It is shown that the proposed back-analysis method can evaluates the rational horizontal coefficient of consolidation, which is similar to those obtained from the piezocone dissipation test. Furthermore, proposed method can evaluate appropriate coefficient of consolidation for soil under partially drained condition.

Effects of excess pore pressure dissipation on liquefaction-induced ground deformation in 1-g shaking table test

  • Wang, B.;Zen, K.;Chen, G.Q.;Kasama, K.
    • Geomechanics and Engineering
    • /
    • v.4 no.2
    • /
    • pp.91-103
    • /
    • 2012
  • Focusing on the effect of excess pore pressure dissipation on liquefaction-induced ground deformation, a series of 1-g shaking table tests were conducted in a rigid soil container by use of saturated Toyoura sand, the relative density of which was 20-60%. These tests were subjected to the sinusoidal base shaking with step increased accelerations: 100, 200, 300 and 400 Gals for 2-4 seconds. Shaking table tests were done using either water or polymer fluid with more viscous than water, thus varying the sand permeability of model tests. Excess pore pressures, accelerations, settlements and lateral deformations were measured in each test. Test results are presented in this paper and the effect of sand permeability on liquefaction and liquefaction-induced ground deformation was discussed in detail.

Comparison of 1-g and Centrifuge Model Tests for Similitude Laws (상사법칙 검증을 위한 1-g 모형실험과 원심모형실험의 비교 연구)

  • Kim Sung-Ryul;Hwang Jae-Ik;Kim Myoung-Mo;Ko Hon-Yim
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.5
    • /
    • pp.59-67
    • /
    • 2006
  • The centrifuge and 1-g shaking table tests were performed simultaneously to compare the dynamic behaviors of loose sands of the same geotechnical properties. The prototype soils were 10 m thick liquefiable loose sands. The geometric scaling factors were 20 for 1-g and 40 for centrifuge tests. The excess pore pressure, surface settlement, and acceleration in the soil were measured at the same locations in the 1-g and centrifuge tests. The total excess pore pressure from development to dissipation was measured. In the centrifuge test, viscous fluid was used as the pore water to eliminate the time scaling difference between dynamic time and dissipation time. In the 1-g tests, the steady state concept was applied to determine the unit weight of the model soil, and two different time scaling factors were applied for the dynamic time and the dissipation time. It is concluded that the 1-g tests can simulate the excess pore pressure of the prototype soil if the permeability of the model soil is small enough to prevent dissipation of excess pore pressure during shaking and the dissipation time scaling factor is properly determined.

Thermal stress and pore pressure development in microwave heated concrete

  • Akbarnezhad, A.;Ong, K.C.G.
    • Computers and Concrete
    • /
    • v.8 no.4
    • /
    • pp.425-443
    • /
    • 2011
  • Most previous studies have generally overlooked the contribution of thermal stresses generated within the concrete mass when subjected to microwave heating and reported on pore-pressure as being the dominant cause of surface spalling. Also, the variation in electromagnetic properties of concrete and its effects on the microwave heating process have not been studied in detail. In this paper, finite element modeling is used to examine the simultaneous development of compressive thermal stresses and pore-pressure arising from the microwave heating of concrete. A modified Lambert's Law formulation is proposed to estimate the microwave power dissipation in the concrete mass. Moreover, the effects of frequency and concrete water content on the concrete heating rate and pattern are investigated. Results show high compressive stresses being generated especially in concrete with a high water content when heated by microwaves of higher frequencies. The results also reveal that the water content of concrete plays a crucial role in the microwave heating process.

Deformation Characteristics of Non-liquefied, Reconstituted, Weathered Residual Soils due to the Cyclic Loading (반복재하에 의한 미액상화 재성형 풍화토의 변형 특성)

  • Choi Yeon-Su;Yune Chan-Young;Jang Eui-Ryong;Chung Choong-Ki
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.6
    • /
    • pp.41-49
    • /
    • 2006
  • This paper deals with development and dissipation of excess pore pressure induced by the cyclic load. Cyclic triaxial tests on reconstituted samples of weathered residual soils, which were widely used as construction materials in Korea, were performed. Test results showed that excess pore pressures developed under undrained condition increased with the increase of cyclic loads and confining pressures. And a new concept based on modified excess pore pressure ratio (MEPPR) was proposed for simply estimating excess pore pressures in terms of the number of cyclic load, irrespective of cyclic loads and confining pressures. Also, it was proposed that excess pore pressure ratio (EPPR) could be effectively utilized to estimate volumetric strains during dissipation which decreased as confining pressures increased. Consequently, concept and method to effectively estimate settlements under non-liquefied condition, induced by dynamic loads such as earthquake loads were evaluated based on laboratory test results for reconstituted weathered residual soils.

An Estimation of Smear Zone Induced by Vertical Drain Construction Based on the Laboratory Model test (실내모형실험을 통한 연직배수재 타설에 의한 스미어존의 평가)

  • Kim, Hong-Taek;Han, Yeon-Jin;Kim, Seong-Wook;Hwang, Jeong-Soon
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.279-282
    • /
    • 2007
  • When ground disturbance takes place due to vertical drain construction through mandrel penetration, that affects excess pore water pressure dissipation time because of soft clay coefficient of permeability decreasing. Eventually, consolidation time is influenced. In this research, we measure process of excess pore water pressure dissipation before and after each other different shape's mandrel penetration through model test, and calculates range of smear zone, coefficient of permeability and horizontal coefficient of consolidation after model test. Using of test result, we grasp a degree of drainage ability drop resulting from vertical drain construction.

  • PDF

Modelling of Excess Pore Pressure Dissipation After Liquefaction (액상화 발생후 과잉간극수압 소산 모델링)

  • 김명모;박영호
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.4
    • /
    • pp.39-48
    • /
    • 2001
  • 액상화 발생후 과잉간극수압 소산 특성을 파악하기 위하여 포화된 수평 모래지반에 대하여 1-g 진동대시험을 수행하였다. 진동대시험에는 주문진 표준사와 영종도 세사를 사용하였으며 상대밀도를 dir 20~30% 사이가 되도록 조성하였다. 간극수압계, 가속도계 그리고 LVDT 등으로 시험중의 지반거동을 계측하였으며, 4Hz의 sine 파를 0.15g에서 5초간 5회 반복하여 작용시켰다. 진동대시험을 분석한 결과 액상화 발생후 과잉간극수압의 소산속도는 그 지반의 투수성뿐 아니라 과잉간극수압 소산시 입자의 침강거리와 직접 관련이 있는 지반의 침하량에도 크게 영향을 받는 것으로 나타났으며, 이 과정을 침강모래 이론으로 모델링하였을 때 입자의 침강속도와 투수계수 사이의 비례 관계는 침강모래 이론에서의 가정한 것과는 달리 모래의 종류에 따라 차이를 나타내었다. 또한 Terzaghi의 압밀이론으로는 액상화 후 과잉간극수압의 소산과정을 적절히 모사할 수 없었다.

  • PDF

Coupled analysis for the influence of blasting-induced vibration on adjacent dam (발파하중이 인접 댐에 미치는 진동영향에 대한 연계해석적 검토)

  • Park, Inn-Joon;Kim, Sung-In;Nam, Kee-Chun;Kwak, Chang-Won
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.6 no.1
    • /
    • pp.41-50
    • /
    • 2004
  • The numerical investigation for the effects of blasting-induced vibration on adjacent dam and pore water pressure fluctuation was conducted through solid-water coupled analysis under dynamic loading. The stability of dam was examined by peak particle velocity of core. Pore water pressure distributions were calculated by steady state flow analysis using coupled analysis on ground water and blasting-induced vibration. The influence of pore water pressure and the effective stress distribution in the ground were also investigated. Furthermore, effective stress alteration was examined by applying Finn & Byrne Model to monitor the generation and dissipation of pore water pressure.

  • PDF

An Optimization Method for Self-Boring Pressuremeter Holding Test to Determine a Horizontal Coefficient of Consolidation under Partial Drained Soil Conditio (부분배수가 발생하는 지반의 수평압밀계수 결정을 위한 자가굴착식 프레셔메터 유지시험의 최적화 해석법)

  • Kim, Young-Sang
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.370-375
    • /
    • 2005
  • This paper describes a systematic way of identifying the horizontal coefficient of consolidation for clayey soil under undrained condition and silty soil under partial drained condition by applying an optimization technique to the early part of dissipation data measured from the self-boring pressuremeter strain holding test. An analytical solution developed by Randolph & Wroth (1979) was implemented in normalized form to express the build-up and dissipation of excess pore pressures around a pressuremeter as a function of the rigidity index. Horizontal coefficient of consolidation was determined by minimizing the differences between theoretical and measured excess pore pressure curves using optimization technique. It was found that the proposed optimization technique can evaluate in-situ horizontal coefficient of consolidation rationally, which is similar with that obtained from the piezocone dissipation test. Furthermore, proposed method can evaluate appropriate coefficient of consolidation for soil under partially drained condition.

  • PDF