• Title/Summary/Keyword: Pore blockage

Search Result 11, Processing Time 0.019 seconds

Role of $K^+$ Channels in $H_2O_2$- and Cryo-induced Apoptosis of Mouse and Bovine Embryos (과산화수소와 동결에 의해 유도된 생쥐와 소 수정란의 사멸에 있어서 칼륨 통로의 역할)

  • Choe, Changyong;Kim, Chang-Woon;Kang, Dawon;Han, Jaehee
    • Journal of Embryo Transfer
    • /
    • v.29 no.3
    • /
    • pp.249-255
    • /
    • 2014
  • Programmed cell death or apoptosis is associated with changes in $K^+$ concentration in many cell types. Recent studies have demonstrated that two-pore domain $K^+$ ($K_{2P}$) channels are involved in mouse embryonic development and apoptotic volume decrease of mammalian cells. In cerebellar granule neurons that normally undergo apoptosis during the early developmental stage, TASK-1 and TASK-3, members of $K_{2P}$ channels, were found to be critical for cell death. This study was performed to identify the role of $K^+$ channels in the $H_2O_2$-induced or cryo-induced cell death of mouse and bovine embryos. Mouse and bovine two-cell stage embryos (2-cells) exposed to $H_2O_2$ for 4 h suffered from apoptosis. The 2-cells showed positive TUNEL staining. Treatment with high concentration of KCl (25mM) inhibited $H_2O_2$-induced apoptosis of 2-cells by 19%. Cryo-induced death in bovine blastocysts showed positive TUNEL staining only in the cells near the plasma membrane. Cryoprotectant supplemented with 25 mM KCl reduced apoptosis slightly compared to cryoprotectant supplemented with 5 mM KCl. However, the combination of antioxidants (${\beta}$-mercaptoethanol) with 25 mM KCl significantly decreased the rate of $H_2O_2$-induced and cryo-induced apoptosis compared to treatments with only antioxidants or 25 mM KCl. These results show that blockage of $K^+$ channel efflux for a short-time reduces $H_2O_2$- and cryo-induced apoptosis in mouse and bovine embryos. Our findings suggest that apoptosis in mouse and bovine embryos might be controlled by modulation of $K^+$ channels which are highly expressed in a given cell type.