• Title/Summary/Keyword: Pore Volume

Search Result 830, Processing Time 0.024 seconds

Effect of oxyfluorination on activated electrospun carbon nanofibers for $CO_2$ storage (함산소불소화 효과에 의한 전기방사 활성탄소나노섬유의 $CO_2$ 저장)

  • Bai, Byong Chol;Kim, Jong Gu;Im, Ji Sun;Lee, Young-Seak
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.219.2-219.2
    • /
    • 2011
  • The oxyfluorination effects of electrospun carbon nanofibers (OFACFs) were investigated for $CO_2$ storage. Carbon nanofibers were prepared form poly acrylonitrile / N,N-dimethylformamide solution through electrospinning method and heat treatment. Chemical activation of carbon nanofibers were carried out in order to improve the pore structure. And the surface modification of activated carbon nanofibers was conducted by oxyfluorination to improve the $CO_2$ storage on effect of introduced functional groups. The samples were labeled CF (electrospun carbon nanofiber), ACF (activated carbon nanofibers), OFACF-1 ($F_2:O_2$ = 3:7), OFACF-2 ($F_2:O_2$ = 5:5) and OFACF-3 ($F_2:O_2$ = 7:3). The functional group of OFACFs was investigated by x-ray photoelectron spectroscopy analysis. The specific surface area, pore volume and pore size of OFACFs were calculated and pore shape was estimated by the BET equation. Through the adsorption isotherm, the specific surface area and pore volume significantly decreased by oxyfluorination.

  • PDF

Pore Structure Characterization of Poly(vinylidene chloride)-Derived Nanoporous Carbons

  • Jung, Hwan Jung;Kim, Yong-Jung;Lee, Dae Ho;Han, Jong Hun;Yang, Kap Seung;Yang, Cheol-Min
    • Carbon letters
    • /
    • v.13 no.4
    • /
    • pp.236-242
    • /
    • 2012
  • Poly(vinylidene chloride) (PVDC)-derived nanoporous carbons were prepared by various activation methods: heat-treatment under an inert atmosphere, steam activation, and potassium hydroxide (KOH) activation at 873, 1073, and 1273 K. The pore structures of PVDC-derived nanoporous carbons were characterized by the $N_2$ adsorption technique at 77 K. Heat treatment in an inert atmosphere increased the specific surface area and micropore volume with elevating temperature, while the average micropore width near 0.65 nm was not significantly changed, reflecting the characteristic pore structure of ultramicroporous carbon. Steam activation for PVDC at 873 and 1073 K also yielded ultramicroporosity. On the other hand, the steam activated sample at 1273 K had a wider average micropore width of 1.48 nm, correlating with a supermicropore. The KOH activation increased the micropore volume with elevating temperature, which is accompanied by enlargement of the average micropore width from 0.67 to 1.12 nm. The average pore widths of KOH-activated samples were strongly governed by the activation temperature. We expect that these approaches can be utilized to simply control the porosity of PVDC-derived nanoporous carbons.

Effect of Water and Aluminum Sulfate Mole Ratio on Pore Characteristics in Synthesis of AlO(OH) Nano Gel by Homogeneous Precipitation (균일침전에 의한 AlO(OH) 나노 겔 합성에서 물/황산알루미늄의 몰 비가 세공특성에 미치는 영향)

  • Choe, Dong-Uk;Park, Byung-Ki;Lee, Jung-Min
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.9 s.292
    • /
    • pp.564-568
    • /
    • 2006
  • AlO(OH) nano gel is used in precursor of ceramic material, coating material and catalyst. For use of these, not only physiochemical control for particle morphology, pore characteristic and peptization but also studies of synthetic method for preparation of advanced application products were required. In this study, AlO(OH) nano gel was prepared through the aging and drying process of aluminum hydroxides gel precipitated by the hydrolysis reaction of dilute NaOH solution and aluminum sulfate solution. In this process, optimum synthetic condition of AlO(OH) nano gel having excellent pore volume as studying the effect of water and aluminum sulfate mole ratio on gel precipitates has been studied. Water and aluminum sulfate mole ratio brought about numerous changes on crystal morphology, surface area, pore volume and pore size. Physiochemical properties were investigated as using XRD, TEM, TG/DTA, FT-IR, and $N_2$ BET method.

Behavior of Cadmium, Zinc, and Copper in Soils -II. Effect of Organic Matter Treatment on Mobility of Cadmium, Zinc, and Copper in Soils- (토양내(土壤內) 카드뮴 아연(亞鉛) 및 구리의 행동(行動)에 관한 연구(硏究) -II. 토양내(土壤內) 카드뮴 아연(亞鉛) 및 구리의 이동(移動)에 미치는 유기물처리(有機物處理)의 영향(影響)-)

  • Yoo, Sun-Ho;Hyun, Hae-Nam
    • Applied Biological Chemistry
    • /
    • v.28 no.2
    • /
    • pp.76-81
    • /
    • 1985
  • Miscible displacement techniques were used to investigate the influence of the organic matter treatment on the mobility of Cd, Zn, and Cu through soil columns. The heavy metals moved most readily through the Bonryang soil (Typic Udifluvents) of relatively low in CEC, pH, and organic matter content. Most parts of Cd and Zn eluted within 7 pore volumes, but Cu eluted between 5 and 15 pore volumes. Although the Gangseo soil (Aquatic Eutrochrepts) had lower in CEC and organic matter content than the Gyorae soil (Typic Distrandepts), the heavy metals moved faster through the Gyorae soil than through the Gangseo soil. Cu eluted more slowly and in smaller quantities than Cd and Zn from the Bonryang soil, but did not eluted from the Gangseo and the Gyorae soils at all during the experimental period. The motility of the heavy metals from the Bonryang and the Gangseo soils was in the order of Cd>Zn>Cu, but that of the Gyorae soil was in the order of Zn>Cd>Cu. Cd and Zn eluted after 5 and 20 pore volumes respectively, from the Bonryang soil treated with 3% compost but Cu did not elute even after 30 pore volumes were collected. By 7% compost treatment only small amountssof Cd eluted after 20 pore volumes. The liming of the Bonryang soil retarded the mobility of Cd, Zn, and Cu. Humic acid treatment did not reduce the motility of the Cd and Zn to the extent observed in the Bonryang soil with compost, but reduced a little motility of Cu.

  • PDF

Modeling of sulfate ionic diffusion in porous cement based composites: effect of capillary size change

  • Gospodinov, Peter N.
    • Computers and Concrete
    • /
    • v.4 no.2
    • /
    • pp.157-166
    • /
    • 2007
  • The paper considers a theoretical model to study sulfate ion diffusion in saturated porous media - cement based mineral composites, accounting for simultaneous effects, such as filling micro-capillaries (pores) with ions and chemical products and liquid push out of them. Pore volume change and its effect on the distribution of ion concentration within the specimen are investigated. Relations for the distribution of the capillary relative radius and volume within the composite under consideration are found. The numerical algorithm used is further completed to consider capillary size change and the effects accompanying sulfate ion diffusion. Ion distribution within the cross section and volume of specimens fabricated from mineral composites is numerically studied, accounting for the change of material capillary size and volume. Characteristic cases of 2D and 3D diffusion are analyzed. The results found can be used to both assess the sulfate corrosion in saturated systems and predict changes occurring in the pore structure of the composite as a result of sulfate ion diffusion.

A Study on the Relationship between the Pore Volume Distributions of Some Adsorbents Including Charcoal and the Rates of Adsorption of a Number of Cigarette Aerosol Ingredients such as Tar, Nicotine and etc. (활성탄을 포함하는 몇 가지 흡착제의 동공부피 분포와 이들의 흡착제에 대한 타르, 유기산 등 연초 에어로솔 성분의 흡착률과의 관련성)

  • Ick Kyun Kang;Sang Hyun Han;Yong Kwon Kim;Eun Hee Cha
    • Journal of the Korean Chemical Society
    • /
    • v.33 no.4
    • /
    • pp.350-356
    • /
    • 1989
  • The analysis of adsortion behaviors of some cigarett aerosol ingredients such as tar, nicotine, carbon monoxide and a number of organic acids has shown that the rates of adsorption of the adsorbates of lower boiling point had increased in accordance with increasing cumulative pore volume, while that of higher doiling point decreased with increasing pore volume of smaller radius. The adsorbents used here were charcoal, silica gel, alumina, and activated clay. The common principle that the adsorbents of greater specific surface area adsorb the larger amount of adsorbates appeared to be disturbed in the adsortion of higher boiling point adsorbates. This confirmation was made mainly by analyzing the adsorption behaviors with regard to the pore volume distributions evaluated on the bases of desorption isotherms.

  • PDF

Evaluation on the Deterioration and Resistance of Cement Matric due to Seawater Attack (시멘트 경화체의 해수침식에 의한 성능저하 및 저항성 평가)

  • 문한영;이승태;김홍삼
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.2
    • /
    • pp.175-183
    • /
    • 2001
  • Immersion tests with artificial seawater were carried out to investigate the resistance to seawater attack of 5 types of cement matrices. From the results of compressive strength and length change, it was found that blended cement mortars due to mineral admixtures, were superior to portland cement mortars with respect to the resistance to seawater attack. Moreover, XRD analysis indicated that the peak intensity ratio of low heat portland cement(LHC) paste, in portland cement pastes, had better results, and so did that of blended cement Paste. Pore volume of pastes by mercury intrusion porosimetry method demonstrated that total pore volume of ordinary portland cement(OPC) paste had a remarkable increase comparing with that of other pastes. In case of immersion of artificial seawater, the use of ground granulated blast-furnace slag and fly ash, however, showed the beneficial effects of 56% and 32% in reduction of total pore volume, respectively.

Evaluation of Permeability and Related Soil Characteristics Based on Pore Pressure Measurement during Consolidation by Radial Drainage (방사배수 압밀 중 위치별 간극수압 측정을 통한 투수계수와 관련물성치의 결정방법)

  • Yune, Chan-Young;Chun, Sung-Ho;Chung, Choog-Ki;Lee, Won-Tekg
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1C
    • /
    • pp.9-17
    • /
    • 2008
  • In this research, an analytical solution for the coefficient of permeability of soils during consolidation is suggested. The pore pressure and the flow rate measurements at different locations during consolidation are utilized. The void ratio and volume compressibility of soils under consolidation are also estimated. A large consolidation testing device, possible in both vertical and radial drainage is designed and manufactured. And consolidation test with kaolinite soils were performed under radially inward drainage direction. Pore pressures in varying radial distances and flow rate with time were measured as well as vertical deformations. From the test results, the changes of permeability, volume compressibility and void ratio under consolidation and their spatial variations are estimated. Thus the proposed solution is verified by comparing with the experimentally estimated test results. In addition, it is confirmed that permeability, void ratio and volume compressibility decrease as consolidation and loading steps progress. Also, these soil characteristics increase with radial distant from drainage boundary, where lowest values observed, and slightly decrease as approaching undrained boundary.

Preparation of Porous Boehmite Gel from Waste AlCl3 Solution (AlCl3 폐액으로부터 다공성 Boehmite Gel의 제조)

  • Park, Byung-Ki;Lee, Hak-Soo;Kim, Young-Ho;Lee, Jung-Min
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.11
    • /
    • pp.864-871
    • /
    • 2004
  • Porous pseudo-boehmite gel was prepared through the aging process of amorphous aluminum hydroxides gel precipitated by the hydrolysis reaction of dilute NaOH solution and AlCl$_3$ solution. In this study, the synthesis method was studied on porous pseudo-boehmite gel having maximum pore volume, as being investigated the changes of crystal structure, infrared rays absorption spectrum, BET surface area and pore structure when the hydrolysis reaction is controlled in the range of pH 7.6~11.6 and the aging process is hold up for 2~24 h at 60~10$0^{\circ}C$. We could find that the gel precipitates deposited in in range of pH 7.6~9.6 were developed into porous pseudo-boehmite which surface area was 250~357 $m^2$/g, pore volume was 0.4~0.7 cc/g and average pore size was 58~l14$\AA$. However, the gel precipitates deposited in range of pH 10.6~11.6 were developed into bayerite which pore volume was very little.

Effect of Curvature Dependency of Surface Tension on the Result of Pore-Volume Distribution Analysis (동공부피 분포의 계산결과에 미치는 표면장력의 곡률 의존도 효과)

  • Cho Chang-Hyun;Ahn Woon-Sun;Chang Seihun
    • Journal of the Korean Chemical Society
    • /
    • v.16 no.6
    • /
    • pp.341-348
    • /
    • 1972
  • The significance of the curvature dependency correction of surface tension is studied in calculating the pore volume distribution of porous adsorbent from nitrogen adsorption isotherm. That is, Kelvin radii are calculated with curvature dependent surface tension values calculated by Chang et al, and then with these Kelvin radii, pore volume distributions of three porous adsorbents, silica alumina (steam deactivated), silica gel (Davidson 59), and silica gel (Mallinc-krodt Standard Luminescent), are calculated. The results are compared with those obtained by the previous method in which surface tension is taken as constant and also with the others. obtained by the modelless method proposed by Brunauer et al. The maximum point of the distribution curve shift to the larger pore radius, when the curvature dependency is considered. Furthermore, the relative pressure at which capillary condensation commences is by far the lower than that accepted previously. This effect becomes significant as the pore radius approaches to the micropore range.

  • PDF