• Title/Summary/Keyword: Porcine somatic cells

Search Result 65, Processing Time 0.03 seconds

Analysis of Endoplasmic Reticulum (ER) Stress Induced during Somatic Cell Nuclear Transfer (SCNT) Process in Porcine SCNT Embryos

  • Lee, Hwa-Yeon;Bae, Hyo-Kyung;Jung, Bae-Dong;Lee, Seunghyung;Park, Choon-Keun;Yang, Boo-Keun;Cheong, Hee-Tae
    • Development and Reproduction
    • /
    • v.22 no.1
    • /
    • pp.73-83
    • /
    • 2018
  • This study investigates the endoplasmic reticulum (ER) stress and subsequent apoptosis in duced during somatic cell nuclear transfer (SCNT) process of porcine SCNT embryos. Porcine SCNT and in vitro fertilization (IVF) embryos were sampled at 3 h and 20 h after SCNT or IVF and at the blastocyst stage for mRNA extraction. The x-box binding protein 1 (Xbp1) mRNA and the expressions of ER stress-associated genes were confirmed by RT-PCR or RT-qPCR. Apoptotic gene expression was analyzed by RT-PCR. Before commencing SCNT, somatic cells treated with tunicamycin (TM), an ER stress inducer, confirmed the splicing of Xbp1 mRNA and increased expressions of ER stress-associated genes. In all the embryonic stages, the SCNT embryos, when compared with the IVF embryos, showed slightly increased expression of spliced Xbp1 (Xbp1s) mRNA and significantly increased expression of ER stress-associated genes (p<0.05). In all stages, apoptotic gene expression was slightly higher in the SCNT embryos, but not significantly different from that of the IVF embryos except for the Bax/Bcl2L1 ratio in the 1-cell stage (p<0.05). The result of this study indicates that excessive ER stress can be induced by the SCNT process, which induce apoptosis of SCNT embryos.

Fate of Donor Centrosome and Microtubule Dynamics of Porcine Somatic Cell Nuclear Transfer Embryos

  • Kwon, Dae-Jin;Park, Choon-Keun;Yang, Boo-Keun;Cheong, Hee-Tae
    • Reproductive and Developmental Biology
    • /
    • v.34 no.2
    • /
    • pp.73-79
    • /
    • 2010
  • We investigated the microtubule dynamics, including the inheritance of donor centrosomes and the mitotic spindle assembly occurring during the first mitosis of somatic cell nuclear transfer (SCNT) embryos in pigs. SCNT embryos were fixed 15 min and 1 h after fusion in order to assess the inheritance pattern of the donor centrosome. The distribution and dynamic of the centrosome and microtubule during the first mitotic phase of SCNT embryos were also evaluated. The frequency of embryos evidencing $\gamma$-tubulin spots (centrosome) was 93.2% in the SCNT embryos 15 min after fusion. In the majority of the SCNT embryos (61.5%), however, no centrosome was observed 1 h after fusion. The frequency of the embryos with no or abnormal mitotic spindles 20 h after fusion was 19.6%. The $\gamma$-tubulin spots were detected near the nuclei of somatic cells regardless of cell cycle phase, whereas $\gamma$-tubulin spots in the SCNT embryos were observed only during the inter-anaphase transition. These results showed that the donor centrosome is inherited into the SCNT embryos, but failed to assemble the normal mitotic spindles during first mitotic phase in some SCNT embryos.

Efficiency of Female-Derived Donor Cells on High Postnatal Survival in Pig Cloning

  • Cho, Seong-Keun;Park, Mi-Rung;Kwon, Deug-Nam;Hwang, Kyu-Chan;Lee, Eun-Kyeong;Son, Woo-Jin;Kim, Jin-Hoi
    • Proceedings of the KSAR Conference
    • /
    • 2004.06a
    • /
    • pp.217-217
    • /
    • 2004
  • The present study was conducted to investigate the developmental competency between male- and female-somatic cell derived nuclear-transferred porcine embryos, and the productive and survival efficiency of cloned male and female piglets. The potential of eggs receiving somatic cells to develop into blastocysts was not different among donor cells of different origins. (omitted)

  • PDF

Nuclear Remodeling and In Vitro Development Following Somatic Cell Nuclear Transfer in Swine

  • Yoon Jong-Taek;Kim Yong-Yeup;Lee Jong-Wan;Min Kwan-Sil;Hwang Seongsoo
    • Reproductive and Developmental Biology
    • /
    • v.28 no.4
    • /
    • pp.241-245
    • /
    • 2004
  • This study was conducted to investigate nuclear remodeling and developmental rate following nuclear transfer of fetal fibroblast cells, ear skin cells and oviduct epithelial cells into porcine recipient oocytes. To test par-thenogenetic activation, oocytes were treated with a 6-dimethylaminopurine (6-DMAP), a single DC-pulse (DC), calcium ionomycin (ionomycin), DC+6-DMAP and ionomycin + 6-DMAP after in vitro maturation. For nuclear transfer, in vitro matured oocytes were enucleated, and donor cells were transferred into oocytes. Cloned embryos were fused and stimulated with 6-DMAP for 4 h and cultured in vitro for 6 days. Among treatments for parthenogenesis, the activation rate of DC +6-DMAP treatment was significantly higher than that of single treatment roups (p<0.01), except for DC treatment group. However, the difference was not significant in activation rate compared to other complex treatment groups. Nuclear swelling of the cloned embryos was initiated at 60 min after stimulation and increased afterwards. Fusion rates were not different among different donor cells. Cleavage rates of DC treatment groups were significantly higher than those of DC+6-DMAP treatment groups (p<0.05) in case that fetal fibroblast and ear cells were used for nuclear donor. The cloned embryos from developed to blastocysts in oviduct epithelial cell nuclear transfer with DC+6-DMAP treatment was significantly higher compared to those with DC only treatment (p<0.05). However, no blastocyst was developed from nuclear transfer of fetal fibroblast and ear cells regardless of activation treatments. Based on these results, a proper activation stimulation may be necessary to increase the activation rate and the development to blastocyst in cloned porcine embryos.

Developmental Competence of Porcine NT Embryos Constructed by Microinjection of Fibroblast Cells into Vitrified Porcine Oocytes

  • Kim, Y.H.;Seok, H.B.;Kim, S.K.
    • Journal of Embryo Transfer
    • /
    • v.22 no.4
    • /
    • pp.265-269
    • /
    • 2007
  • This study was conducted to investigate the efficacy of vitrification procedure for the cryopreservation of porcine oocytes and the utilization of vitrified oocytes as recipient cytoplasts for somatic cell nuclear transfer (NT), and observed that porcine oocytes are evaluated by pronuclear formation, and parthenogenetic development. Single fetal donor cells were deposited into the perivitelline space of vitrified enucleation oocytes, followed by electrical fusion and activation. NT embryos were cultured in NCSU-23 medium supplemented with 5% FBS, at $38.5^{\circ}C$ in 5% $CO_2$ and air. 1. When the developmental rates of the oocytes after being culture for $0{\sim}10$ hours vitrified with EDS and ETS were 42.0%, 38.0%, respectively. This results were lower than the control group(62.2%). 2. When the developmental rates of the oocytes after being culture for $0{\sim}10$ hours vitrified-thawed with sucrose and glucose, 5% PVP, NCSU-23 supplemented with 10% FBS were 33.3%, 25.9%, respectively. This results were lower than the control group(55.6%). 3. The fusion and development to the blastocyst stage between the NT embryos constructed with the vitrified and non-vitrified oocytes were significant differences. Developmental rate of oocytes and NT embryos constructed with the vitrified or non-vitrified oocytes were $13.0{\pm}2.4%\;and\;23.2{\pm}2.4%$, respectively.

Effect of Sperm Treatment and Co-culture on cleavage of Porcine Oocytes Matured In Vitro (정자처리와 공배양이 체외성숙된 돼지 난포란의 분할에 미치는 영향)

  • 이장희;김창근;정영채;박충생
    • Journal of Embryo Transfer
    • /
    • v.9 no.3
    • /
    • pp.269-277
    • /
    • 1994
  • The objective of this study was to develop an effective in vitro production system capable of obtaining more porcine embryos from immature oocytes These experiments were conducted to examine the effect of sperm factor on the IVF and IVD, and the effect of coculture with somatic cells on the IVD of embryos. Although the concentration of epididymal sperm for IVF did not affect on cleavage rate, but 5 x 105 sperm/mi showed the highest cleavage rate(48.7%) and the developmental potential of IVF oocytes from this concentration was also greatly higher (P$^{\circ}C$-stored sperm for l2hrs and the cleavage rate from fresh sperm was significantly higher (P<0.05) than that from frozen sperm, but the developmental potential after IVF was slightly high from the frozen sperm. The cleavage rate of IVF oocytes cocultured with oviductal epithelial cells and cumulus cells was 76.3% and 72.9%, respectively. There was no difference between two coculture systems but this rate was significantly higher(P<0.05) than that of medium alone(42.0%).

  • PDF

Effects of Trichostatin A on In Vitro Development of Porcine Parthenogenetic and Nuclear Transfer Embryos

  • Diao, Yun-Fei;Kenji, Naruse;Han, Rong-Xun;Lin, Tao;Oqani, Reza-K.;Kang, Jung-Won;Jin, Dong-Il
    • Reproductive and Developmental Biology
    • /
    • v.37 no.2
    • /
    • pp.57-64
    • /
    • 2013
  • Developmental potential of cloned embryos is related closely to epigenetic modification of somatic cell genome. The present study was to investigate the effects of applying histone deacetylation inhibitor, trichostatin A (TSA) to activated porcine embryos on subsequent development of porcine parthenogenetic and nuclear transfer embryos. Electrically activated oocytes were treated with 5 nM TSA for different exposure times (0, 1, 2 and 4 hr) and then the activated embryos were cultured for 7 days. The reconstructed embryos were treated with different concentrations of 0, 5, 10 and 25 nM TSA for 1 hr. Also 5 nM TSA was tested with different exposure times of 0, 0.5, 1, 2 and 4 hr. And fetal fibroblast cells were treated with 50 nM TSA for 1, 2 or 4 hr and with 5 nM TSA for 1 hr. Cumulus-free oocytes were enucleated and reconstructed by TSA-treated donor cells and electrically fused and cultured for 6 days. In parthenogenetic activation experiments, 5 nM TSA treatment for 1 hr significantly improved the percentage of blastocyst developmental rates than the other groups. Total cell number of blastocysts in 1 hr group was significantly higher than other groups or control. Similarly, blastocyst developmental rates of porcine NT embryos following 5 nM TSA treatment for 1 hr were highest. And the reconstructed embryos from donor cells treated by 50 nM TSA for 1 hr improved the percentage of blastocyst developmental rates than the control group. In conclusion, TSA treatment could improve the subsequent blastocyst development of porcine parthenogenetic and nuclear transfer embryos.

Effects of programmed cell death induction method on somatic cell development

  • Kim, Sang-Hwan
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.36 no.3
    • /
    • pp.137-144
    • /
    • 2021
  • In this study, to analyze whether artificial regulation of apoptosis in the development of somatic cells can affect the stable growth and development of cells, 20 alpha-hydroxysteroid dehydrogenase (20α-HSD) and rapamycin were treated to induce apoptosis and autophagy in the both skin and muscle cells. Respectively, and 3-methyladenine was supplemented to inhibit cell death. Our results show that stimulation with rapamycin activated autophagy in both types of cells, but increased apoptosis more than autophagy in the case of skin cells. These results indicate that there was a difference in the expression of survival factors and cell development depending on the type of cell. In particular, in the expression of autophagy-related gene (MAP1LC3A) was higher than that of Casp-3, an apoptosis factor. Furthermore, cell development was the highest in all cell groups cultured by artificially inducing autophagy, however the lowest in the apoptosis-inhibited group. Especially, the noteworthy result of this study was that when apoptosis was induced using 20α-HSD, it was possible to induce apoptosis in both skin and muscle cells. Therefore, the main point of this study is that apoptosis induced during cell culture plays a pivotal role in cell remodeling.

In Vitro Developmental Competence of Porcine SCNT Embryos is improved by m-Carboxycinnamic Acid Bishydroxamide, Histone Deacetylase Inhibitor

  • Park, Sang-Hoon;Lee, Mi-Ran;Kim, Tae-Suk;Baek, Sang-Ki;Jin, Sang-Jin;Kim, Jin-Wook;Jeon, Sang-Gon;Yoon, Ho-Baek;Lee, Joon-Hee
    • Reproductive and Developmental Biology
    • /
    • v.38 no.4
    • /
    • pp.147-158
    • /
    • 2014
  • Differentiated nuclei can experimentally be returned to an undifferentiated embryonic status after nuclear transfer (NT) to unfertilized metaphase II (MII) oocytes. Nuclear reprogramming is triggered immediately after somatic cell nucleus transfer (SCNT) into recipient cytoplasm and this period is regarded as a key stage for optimizing reprogramming. In a recent study (Dai et al., 2010), use of m-carboxycinnamic acid bishydroxamide (CBHA) as a histone deacetylase inhibitor during the in vitro early culture of murine cloned embryos modifies the acetylation status of somatic nuclei and increases the developmental competence of SCNT embryos. Thus, we examined the effects of CBHA treatment on the in vitro preimplantation development of porcine SCNT embryos and on the acetylated status of histone H3K9 on cloned embryos at the zygote stage. We performed the three groups SCNT: SCNT (NT), CBHA treatment at the porcine fetus fibroblast cells (PFFs) used as donor cells prior to SCNT (CBHA-C) and CBHA treatment at the porcine SCNT embryos during the in vitro early culture after oocyte activation (CBHA-Z). The PFFs were treated with a $15{\mu}M$ of CBHA (8 h) for the early culture and the porcine cloned embryos were treated with a $100{\mu}M$ concentration of CBHA during the in vitro early culture (10 h). Cleavage rates and development to the blastocyst stage were assessed. No significant difference was observed the cleavage rate among the groups (82.6%, 76.4% and 82.2%, respectively). However, the development competence to the blastocyst stage was significantly increased in CBHA-Z embryos (22.7%) as compared to SCNT and CBHA-C embryos (8.6% and 4.1%)(p<0.05). Total cell numbers and viable cell numbers at the blastocyst stage of porcine SCNT embryos were increased in CBHA-Z embryos as compared to those in CBHA-C embryos (p<0.05). Signal level of histone acetylation (H3K9ac) at the zygote stage of SCNT was increased in CBHA-Z embryos as compared to SCNT and CBHA-C embryos. The results of the present study suggested that treatment with CBHA during the in vitro early culture (10 h) had significantly increased the developmental competence and histone acetylation level at the zygote stage.

Effects of Donor Cell Passage, Size and Type on Development of Porcine Embryos Derived from Somatic Cell Nuclear Transfer

  • Zhang, Y.H.;Song, E.S.;Kim, E.S.;Cong, P.Q.;Lee, S.H.;Lee, J.W.;Yi, Y.J.;Park, Chang-Sik
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.2
    • /
    • pp.194-200
    • /
    • 2009
  • The aim of this study was to investigate the effects of donor cell passage, size and type on the development of nuclear transfer embryos. Porcine cumulus cells, fetal fibroblasts and oviductal epithelial cells from 1-2, 3-6 and 7-10 passages were used for the nuclear transfer. In the oocytes with the cumulus donor cells, fusion and cleavage rates of oocytes and cell numbers per blastocyst among the three different passage groups did not show any differences, but the rates of blastocyst formation from 1-2 and 3-6 passage groups were higher than those from 7-10 passage group. The rates of fusion, cleavage and blastocyst formation, and the cell numbers per blastocyst were higher in the embryos with the sizes of <20 and 20 ${\mu}m$ cumulus donor cells compared to the >20 ${\mu}m$ cumulus donor cell. In the oocytes with the fetal fibroblast donor cells, the rate of blastocyst formation from the 3-6 passage group was higher than from 1-2 and 7-10 passage groups. The embryos with the size of 20 $\mu{m}$ fetal fibroblast donor cell showed higher rate of blastocyst formation compared to those with <20 and >20 ${\mu}m$ donor cells. In the oocytes with the oviductal epithelial cells, the rates of blastocyst formation from 1-2 and 3-6 passage groups were higher compared to those from 7-10 passage group. The embryos with the sizes of <20 and 20 ${\mu}m$ oviductal epithelial donor cells had a higher rate of blastocyst formation compared to those with >20 ${\mu}m$ donor cell. Fusion and cleavage rates of oocytes, and cell numbers per blastocyst among the three different donor cell types from the 3-6 passage did not show any differences. However, the rate of blastocyst formation of somatic cell nuclear transfer (SCNT) embryos with the fetal fibroblast donor cell was higher than that of blastocyst formation of SCNT embryos with the cumulus and oviductal epithelial donor cells.