• Title/Summary/Keyword: Porcine buccal mucosa

Search Result 3, Processing Time 0.016 seconds

Ex Vivo Permeability Characteristics of Porcine Buccal Mucosa to Drugs with Various Polarity

  • Lee, Jae-Hwi;Lee, Yoon-Jin;Yoon, Mi-Kyeong;Choi, Young-Wook
    • Journal of Pharmaceutical Investigation
    • /
    • v.35 no.2
    • /
    • pp.71-74
    • /
    • 2005
  • The aim of this study was to analyze characteristics of the barrier function of excised porcine buccal mucosa to the test compounds, estradiol, propranolol HCI, melatonin, and mannitol with a wide range of partition coefficient values. The permeability of melatonin was measured through frozen, stored, and fresh porcine buccal mucosa to examine the impact of storage conditions on the permeability of porcine buccal mucosa. The results demonstrated that the ex vivo permeability of the porcine buccal mucosa was greater for more lipophilic solutes, which was consistent with a series of molecules transported by passive transepithelial diffusion. The melatonin permeation profiles through frozen, stored, and fresh mucosa illustrated that damage was incurred by the freezing process of the mucosal tissue, leading to loss of the barrier function and thereby an increased permeation coefficient. It can be observed that the influence of compound lipophilicity on the association of the compounds with buccal mucosa was clear. The relationship between permeation coefficient and Log P values for the four compounds investigated demonstrated a proportional relationship, further confirming the importance of the lipophilicity of a compound to permeate the buccal mucosa. These results showed that the ex vivo porcine buccal mucosa model is a suitable tool to screen oral mucosal permeability.

The Effect of Storage Conditions on the Permeability of Porcine Buccal Mucosa

  • Lee, Jae-Hwi;Lww, Sang-Kll;Choi, Young-Wook
    • Archives of Pharmacal Research
    • /
    • v.25 no.4
    • /
    • pp.546-549
    • /
    • 2002
  • The impact of storage conditions on the permeability of porcine buccal mucosa to [$^3H$]water and [$^{14}C$]mannitol was assessed. The fresh pocine buccal tissue (fresh tissue) was obtained by utilizing pig heads within 24 hours of slaughter. The stored and frozen porcine buccal tissues (stored tissue and frozen tissue) were obtained after the storage of the tissue intact in the pig heads at $4^{\circ}C$ or -$20^{\circ}C$, respectively, for 24 h. The results demonstrated that the barrier properties of the porcine buccal mucosa were maintained with regard to [$^3H$]water permeability when stored at $4^{\circ}C$ for 24 h. However, freezing the tissue resulted in tissue damage illustrated by a significant increase in [$^3$H]water permeability. [$^{14}C$]Mannitol does not appear to be a suitable model solute to assess the ex vivo permeability of porcine buccal mucosa due to its extremely low permeability.

Transport Characteristics and Screening of Penetration Enhancer through Buccal Mucosa of Butorphanol Tartrate from [P(AA-co-PEGMM)] Copolymer Films ([P(AA-co-PEGMM)] 공중합체 필름으로부터 Butorphanol Tartrate의 구강점막 투과 특성 및 투과촉진제의 검색)

  • Kim, Joun-Sik;Park, Jeong-Sook;Jeong, Yeon-Bok;Han, Kun
    • Journal of Pharmaceutical Investigation
    • /
    • v.33 no.3
    • /
    • pp.157-162
    • /
    • 2003
  • The feasibility of [P(AA-co-PEGMM)] film as a buccal mucoadhesive patch was previously reported by estimating mucoadhesiveness and release characteristics. To find a rational penetration enhancer of [P(AA-co-PEGMM)] film containing butorphanol tartrate (Bt), penetration of Bt from [P(AA-co-PEGMM)] film which contained various additives was estimated by measuring its flux, Papp and lag tme in in vitro buccal membrane of porcine. EDTA showed almost no increase of Bt permeability, wherease SGC, STDHF and SLS increased the permeability of Bt with the order of SGC > STDHF > SLS. The rational additive concentration of SGC was 4% and its Papp and lag time were $1.93{\times}10^{-4}{\pm}4.21{\times}10^{-6},\;126.60{\pm}21.88min\;(control\;:\;Papp\;0.45{\times}10^{-4};\;lag\;time\;211.01{\pm}16.77\;min)$, respectively.